[ home ] [ math / cs / ai / phy / as / chem / bio / geo ] [ civ / aero / mech / ee / hdl / os / dev / web / app / sys / net / sec ] [ med / fin / psy / soc / his / lit / lin / phi / arch ] [ off / vg / jp / 2hu / tc / ts / adv / hr / meta / tex ] [ chat ] [ wiki ]

/math/ - Mathematics


Name
Email
Subject
Comment
Verification
Instructions:
  • Press the Get Captcha button to get a new captcha
  • Find the correct answer and type the key in TYPE CAPTCHA HERE
  • Press the Publish button to make a post
  • Incorrect answer to the captcha will result in an immediate ban.
File
Password (For file deletion.)

25 Dec 2021Mathchan is launched into public


File: mathchan.jpg ( 99.43 KB , 1200x900 , 1740499273498.jpg )

Image
Why are you not at the math room https://depvana.com/topic/202

let's gather around mathematics there. As a start, I need examples of a real problem where complex numbers are used to derive a real solution?


File: Linear-Differential-Equation.png ( 667.17 KB , 2000x2068 , 1655761703189.png )

Image
Post diff eqs and their solutions.
14 posts and 1 image reply omitted. Click here to view.
>>

File: FTDC9FGXwAEZ211.jpg ( 297.09 KB , 2048x1616 , 1705954986668.jpg )

Image
>>207
how did i not see this lol i have a wide collection

Consider
y2y=ln(x)y''-2y=\ln(x)
.

Let's first solve for the complementary solution, which is the general solution to the complementary equation
y2y=0y''-2y=0
.

The characteristic polynomial for the complementary equation is
λ22=0\lambda^2-2=0
, so
λ=±2\lambda=\pm \sqrt{2}
. Hence, the complementary solution is
yc(x)=Ay1(x)+By2(x)=Aex2+Bex2y_c(x)=Ay_1(x)+By_2(x)=Ae^{-x\sqrt{2}}+Be^{x\sqrt2}
for some constants
AA
and
BB
. Now let's find the particular solution using variation of parameters. Using the two basis solutions of the complementary solution,
y1(x)y_1(x)
and
y2(x)y_2(x)
, we construct the Wronskian and get
W(ex2,ex2)(x)=ex2ex2(ex2)(ex2)=22W\left(e^{-x\sqrt{2}},\, e^{x\sqrt2}\right)(x) = \begin{vmatrix} e^{-x\sqrt{2}} & e^{x\sqrt{2}}\\ \left(e^{-x\sqrt{2}}\right)' & \left(e^{x\sqrt{2}}\right)' \end{vmatrix} = 2\sqrt2


Hence, for the particular solution
yp(x)=u1(x)y1(x)+u2(x)y2(x)y_p(x)=u_1(x)y_1(x)+u_2(x)y_2(x)
, we have,
u1(x)=ln(x)y2(x) dxW(ex2,ex2)(x)=ln(x)ex2 dx22=14Ei(x2)14ex2ln(x) u_1(x) = - \int\frac{\ln(x)y_2(x)\text{ d}x}{W\left(e^{-x\sqrt{2}},\, e^{x\sqrt2}\right)(x)} = -\int\frac{\ln(x)e^{x\sqrt2}\text{ d}x}{2\sqrt2} = \frac{1}{4}\operatorname{Ei}\left(x\sqrt2\right)-\frac14 e^{x\sqrt2}\ln(x)

u2(x)=ln(x)y1(x) dxW(ex2,ex2)(x)=ln(x)ex2 dx22=14Ei(x2)14ex2ln(x) u_2(x) = \int\frac{\ln(x)y_1(x)\text{ d}x}{W\left(e^{-x\sqrt{2}},\, e^{x\sqrt2}\right)(x)} = \int\frac{\ln(x)e^{-x\sqrt2}\text{ d}x}{2\sqrt2} = \frac{1}{4}\operatorname{Ei}\left(-x\sqrt2\right)-\frac14 e^{-x\sqrt2}\ln(x)


The particular solution then is nothing but
yp(x)=u1(x)y1(x)+u2(x)y2(x)=(14Ei(x2)14ex2ln(x))ex2+(14Ei(x2)14ex2ln(x))ex2=14ex2(e2x2Ei(x2)+Ei(x2)2ex2ln(x)) y_p(x) = u_1(x)y_1(x)+u_2(x)y_2(x) = \left(\frac{1}{4}\operatorname{Ei}\left(x\sqrt2\right)-\frac14 e^{x\sqrt2}\ln(x)\right) e^{-x\sqrt2} + \left(\frac{1}{4}\operatorname{Ei}\left(-x\sqrt2\right)-\frac14 e^{-x\sqrt2}\ln(x)\right) e^{x\sqrt2}\\ = \frac14 e^{-x\sqrt2} \left( e^{2x\sqrt2}\operatorname{Ei}\left(-x\sqrt2\right) + \operatorname{Ei}\left(x\sqrt2\right) - 2e^{x\sqrt2}\ln(x) \right)

Thus the complete general solution is given by
y(x)=yc(x)+yp(x)=Aex2+Bex2+14ex2(e2x2Ei(x2)+Ei(x2)2ex2ln(x)) \boxed{y(x) = y_c(x) + y_p(x) = Ae^{-x\sqrt{2}}+Be^{x\sqrt2} + \frac14 e^{-x\sqrt2} \left( e^{2x\sqrt2}\operatorname{Ei}\left(-x\sqrt2\right) + \operatorname{Ei}\left(x\sqrt2\right) - 2e^{x\sqrt2}\ln(x) \right)}
>>
>>210
>>212
>>213

Honestly, I never understood why we defined the notion of an "elementary" function the way we did. An elementary function from what I've seen is completely restricted to polynomials/rational powers, exponentials, and logarithms (trig/hyperbolic trig and their inverses are expressible in exponentials/logs), which is extremely limited.
>>

File: GFv9PYsakAA1vJW.jpg ( 1.28 MB , 1400x1900 , 1708564466975.jpg )

Image
We have
y=(1+x)y+xy2y'=(1+x)\,y+xy^2
.

Rewriting this gives
y(1+x)y=xy2y'-(1+x)\,y=xy^{2}
. This is a standard Bernoulli diffeq form
y+a(x)y=b(x)yαy'+a(x)\,y=b(x)\,y^{\alpha}
, which is solved by performing the substitution
ϕ=y1α\phi=y^{1-\alpha}
. Using this substitution, which for our specific case is
ϕ=y12=y1\phi = y^{1-2} = y^{-1}
, we have
yy2+x+1y=xϕ+(x+1)ϕ=x\displaystyle -\frac{y'}{y^2} +\frac{x+1}{y} = -x \Longleftrightarrow \phi' + (x+1)\,\phi = -x
.

To make this substitution more rigorous (since it is less obvious), differentials can be used. Also, to account for this division and ensure we miss no solutions, we make sure to check when the denominators are equal to 0, which is
y=0y=0
. Since plugging in
y=0y=0
satisfies the diffeq, this is a constant solution. Then, using the integrating factor
exp(x+1 dx)=ex22+x\exp\left(\displaystyle\int x+1\text{ d}x\right) = e^{\frac{x^2}{2}+x}
, we get
ϕex22+x+(ex22+x)ϕ=xex22+x(ϕex22+x)dx=xex22+x dxϕex22+x=π2eerfi(x+12)ex22+x+Cϕ=π2eerfi(x+12)ex22+x+Cex22+x \begin{align*} \phi'e^{\frac{x^2}{2}+x} + \left(e^{\frac{x^2}{2}+x}\right)'\phi &= -xe^{\frac{x^2}{2}+x}\\ \int\left(\phi \,e^{\frac{x^2}{2}+x}\right)'\text{d}x &= \int-xe^{\frac{x^2}{2}+x}\text{ d}x\\ \phi \, e^{\frac{x^2}{2}+x} &= \sqrt{\frac{\pi}{2e}}\operatorname{erfi}\left(\frac{x+1}{\sqrt{2}} \right)-e^{\frac{x^{2}}{2}+x}+C\\ \phi &= \frac{\sqrt{\frac{\pi}{2e}}\operatorname{erfi}\left(\frac{x+1}{\sqrt{2}} \right)-e^{\frac{x^{2}}{2}+x}+C}{e^{\frac{x^2}{2}+x}} \end{align*}

Undoing our substitution, we have, for the positive Dawson Integral
D+(x)=π2ex2erfi(x)D_+(x) = \frac{\sqrt{\pi}}2e^{-x^2}\operatorname{erfi}(x)
that
ϕ=y1=π2eerfi(x+12)ex22+x+Cex22+x=2D+(x+12)1+Cex22x\displaystyle \phi = y^{-1} = \frac{\sqrt{\frac{\pi}{2e}}\operatorname{erfi}\left(\frac{x+1}{\sqrt{2}} \right)-e^{\frac{x^{2}}{2}+x}+C}{e^{\frac{x^2}{2}+x}} = \sqrt{2}\,D_+\left(\frac{x+1}{\sqrt2}\right)-1+Ce^{-\frac{x^2}{2}-x}

    y(x)=0,12D+(x+12)1+Cex22x\displaystyle\implies \boxed{y(x)=0, \qquad \frac{1}{\sqrt{2}\,D_+\left(\frac{x+1}{\sqrt2}\right)-1+Ce^{-\frac{x^2}{2}-x}}}
>>
>>
>>208
I should add to this thread, given I'm study differential equations and have to memorize how to sovle stuff like this.


File: Collatz.pdf ( 291.71 KB , 1738035089350.pdf )

Image
Hello Mathchan. I'm not in math or anybody important, so I've found it basically impossible to communicate my ideas, but attached is a pdf outlining an idea for a proof of the Collatz conjecture I came up with about a year ago. The proof is based on a paper by Mandelbrot:
https://users.math.yale.edu/mandelbrot/web_pdfs/136multifractal.pdf

I can't attest if it's correct or not, but really I'm just posting this because I wanted it archived so that maybe some day someone will find value in it. Also you can do whatever you want with it, rewrite it or whatever.
>>
>>1064
interesting, will read later
>>
>>1077
I would welcome any criticism of it.


File: bc2e95b1013a443b0ad125e8bcecb7e7.jpg ( 87.82 KB , 781x1092 , 1642824353663.jpg )

Image
Talk maths.
10 posts and 1 image reply omitted. Click here to view.
>>

File: IMG_5393.jpg ( 1.42 MB , 1284x1713 , 1708976478684.jpg )

Image
>>132
>>563
Wouldn't it be an improper integral over the complex plane?
>>
>>657
https://mathoverflow.net/questions/453862/is-the-area-of-the-mandelbrot-set-known
>>
Rediscovered something cute

https://files.catbox.moe/l6ft4m.mp4
>>
>>111
Trying to classify what ideals fail the weak lefschetz property
>>
>>917
do u have moar?


File: Frac.png ( 116.91 KB , 256x256 , 1691684545939.png )

Image
I don't get it. Why are so many people in fractals nowadays?

There seems to be a whole community on Youtube that makes Mandelbrotzooms and seems to appreciate the psychedelic aesthetics and the relationship of these to PC hardware. Is this simply a continuation of the graphics demo scene?

I don't quite understand the appeal. However, I don't quite understand the math behind it either.
3 posts and 1 image reply omitted. Click here to view.
>>
>>465
"schizos" schizing out is a good explanation
>>
>>465
It looks interesting, like there could be some seret around any corner, but it isn't, so there's no pressure to find anything
>>
Look:
https://youtu.be/Ed1gsyxxwM0
>>
>>465
There's a difference between being in fractals and being "in fractals". I'm sure there are plenty of people who like to look at a mandelbrot zoom, but the number of mathematicians actually studying fractals is probably quite low, even lower than in the 80s during the fractal heyday.
>>
>>1039
A >>>IQ comment


File: 1642980098311.gif ( 3.73 MB , 406x640 , 1713832706815.gif )

Image
Im new.
2 posts omitted. Click here to view.
>>

File: 100512551_p0.jpg ( 2.66 MB , 4058x2029 , 1725514201950.jpg )

Image
>>749
broooo i need lukyon back plsss 😔😔😔i miss him so much
>>
hi new
>>
Congratulations
>>
Hi new I'm dad
>>
>>749 hey me too


File: question.png ( 1.95 KB , 404x273 , 1731228993157.png )

Image
Can any given probability be reduced to a simple judgment, zero or one?
This would mean that we could reduce any distribution to the binomial distribution
>>
>>1012
no
>>
>>1013
God, I hate it. Terrible. What a pain.


File: she's doing integrals ok.jpg ( 21.76 KB , 480x480 , 1655484028377.jpg )

Image
Primitive function of function
f(x)f(x)
over some interval
x[a,b]x\in[a, b]
is a function
F(x)F(x)
whose derivative is the function
f(x)f(x)
on that interval.

x[a,b],F(x)=f(x)\qquad \forall x\in[a, b],\quad F'(x) = f(x)


Antiderivative (aka indefinite integral) of a function
f(x)f(x)
is a family of its primitive functions which differ by a constant
CRC\in\mathbb{R}
:

f(x)dx=F(x)+C\qquad \int f(x)\mathrm{d}x = F(x) + C


In a nutshell, integration is the opposite of differentiation:

df(x)dxdx=F(x)\qquad \frac{\mathrm{d}\int f(x)\mathrm{d}x}{\mathrm{d}x} = F(x)


df(x)dx=f(x)dx\qquad \mathrm{d}\int f(x)\mathrm{d}x = f(x)\mathrm{d}x


dF(x)=F(x)+C\qquad \int\mathrm{d}F(x) = F(x) + C


Solving integrals in general is pretty hard, but there are a lot of established ways to do it. As OP I'll post some of the standard approaches, but this thread is about any kind of integration so feel free to post integrals and theirs solutions.

Most basic methods are:

  1. Using the table of integrals
  2. Using linearity property
  3. Using substitution
  4. Using partial integration
  5. Reducing quadratic to its cannonical form
  6. Partial decomposition
3 posts omitted. Click here to view.
>>
Partial integration

This basically allows you to swap what you integrate and what you integrate by.

u dv=uvv du+C\qquad\int u\ \mathrm{d}v = uv - \int v\ \mathrm{d}u + C



Usually, you use it to solve an integral with polynomial multiplied by one of the non-polynomial functions.

Pn(x)eaxsin(ax)cos(ax)ln(ax)arcsin(ax)arccos(ax)dx\qquad \int P_n(x)\cdot \begin{matrix}e^{ax}\\\sin(ax)\\\cos(ax)\\\ln(ax)\\\arcsin(ax)\\\arccos(ax)\end{matrix}\mathrm{d}x


You usually choose
uu
to be the non-polynomial because calculating the derivative of it is probably going to be easier than integrating it.
On the other hand, polynomials are easy to both derive and integrate.

Example

You integrate
x2arccos(x)dx\int x^2\arccos(x)\mathrm{d}x
by differentiating
arccos(x)\arccos(x)
and by integrating
x2x^2
:

arccos(x)x2dx={u=arccos(x)du=dx1x2dv=x2dxv=x33}=x33arccos(x)+13x31x2dx+C=x33arccos(x)13(1x2+(1x2)33)+C\begin{aligned} \qquad \int \arccos(x)\cdot x^2 \mathrm{d}x &= \begin{Bmatrix} u = \arccos(x) & \mathrm{d}u = -\frac{\mathrm{d}x}{\sqrt{1- x^2}}\\\mathrm{d}v = x^2\mathrm{d}x & v = \frac{x^3}{3}\end{Bmatrix} = \frac{x^3}{3}\arccos(x)+ \frac{1}{3}\int\frac{x^3}{\sqrt{1-x^2}}\mathrm{d}x +C \\&= \frac{x^3}{3}\arccos(x) - \frac{1}{3}\left(\sqrt{1-x^2} + \frac{\sqrt{(1-x^2)^3}}{3}\right) + C \end{aligned}


As for how you solve
x31x2dx\int\frac{x^3}{\sqrt{1-x^2}}\mathrm{d}x
you do it by substituting
t=1x2,x2=1t2,2dx=2tdtt = \sqrt{1-x^2},\quad x^2 = 1- t^2,\quad \cancel{2}\mathrm{d}x = -\cancel{2}t\mathrm{d}t
:

x31x2dx=1t2t(t)dt=tt33=1x2(1x2)33\qquad \int\frac{x^3}{\sqrt{1-x^2}}\mathrm{d}x = \int\frac{1-t^2}{t}(-t)\mathrm{d}t = t - \frac{t^3}{3} = \boxed{\sqrt{1-x^2} - \frac{\sqrt{(1-x^2)^3}}{3}}
>>
Quadratic trinomial

How do you solve
dxax2+bx+c\int\frac{\mathrm{d}x}{ax^2 + bx + c}
and
dxax2+bx+c\int\frac{\mathrm{d}x}{\sqrt{ax^2 + bx + c}}
? You write
ax2+bx+cax^2 + bx + c
in the following way (hint: completing the square by adding and subtracting
b24)\frac{b^2}{4})
:

ax2+bx+c=a(x2+bax+ca)=a((x2+2b2ax+b24a2)+(b24a2+c))=a((x+b2a)2+(cb2a)2)=a(t2+k2),t=x+b2a,k=cb2a\begin{aligned} \qquad ax^2 + bx + c &= a\left(x^2 + \frac{b}{a}x + \frac{c}{a}\right) = a\left(\left(x^2 + 2\frac{b}{2a}x + \frac{b^2}{4a^2}\right) +\left(- \frac{b^2}{4a^2} + c \right)\right)\\&= a\left(\left(x + \frac{b}{2a}\right)^2 +\left(\sqrt{c - \frac{b}{2a}}\right)^2\right)\\&=a(t^2 + k^2),\quad t= x+ \frac{b}{2a},\quad k=\sqrt{c-\frac{b}{2a}} \end{aligned}


Now the integral reduces to either
1adxt2+k2=1akarctantk+C\boxed{\frac{1}{a}\int\frac{\mathrm{d}x}{t^2 + k^2} = \frac{1}{ak}\arctan{\frac{t}{k}} + C}
or
1adxt2+k2=1alnt2+t2+k2+C\boxed{\frac{1}{a}\int\frac{\mathrm{d}x}{\sqrt{t^2 + k^2}} = \frac{1}{a}\ln\left|t^2 + \sqrt{t^2 + k^2}\right| + C}
>>
Partial fraction decomposition

How do you solve
P(x)Q(x)dx\int\frac{P(x)}{Q(x)}\mathrm{d}x
where
 degP(x)<degQ(x)\ \deg{P(x)} < \deg{Q(x)}
?


First, as a consequence of the fundamental theorem of algebra, any real polynomial can be factored into linear and quadtratic terms.
We will do that with
Q(x)Q(x)
:

Q(x)=(xa1)A1(xa2)A2(xam)Am(x2+b1x+c1)B1(x2+b2x+c2)B2(x2+bnx+cn)Bn\qquad Q(x) = (x-a_1)^{A_1}(x-a_2)^{A_2}\dots(x - a_m)^{A_m}(x^2 + b_1x + c_1)^{B_1}(x^2 + b_2 x + c_2)^{B_2}\dots(x^2 + b_n x + c_n)^{B_n}


Now employ the partial fraction decomposition:

P(x)Q(x)=i=1mj=1Aiaij(xai)j+i=1nj=1Bibijx+cij(x2+bix+)j\qquad\frac{P(x)}{Q(x)} = \sum_{i=1}^m\sum_{j=1}^{A_i}\frac{a_{ij}}{(x-a_i)^j} + \sum_{i=1}^n\sum_{j=1}^{B_i}\frac{b_{ij}x + c_{ij}}{(x^2 + b_ix +)^j}


Then just use the linearity property of the integral.

For example:

x2+1x53x4+x3+7x26x8dx=x2+1(x2)(x+1)2(x23x+4)dx=a11x2dx+a21x+1dx+a22(x+1)2dx+b11x+c11x23x+4dx\qquad \int\frac{x^2 + 1}{x^5 - 3x^4 + x^3 + 7x^2 - 6x - 8}\mathrm{d}x = \int\frac{x^2 + 1}{(x-2)(x +1)^2(x^2-3x + 4)}\mathrm{d}x = \int \frac{a_{11}}{x-2}\mathrm{d}x + \int\frac{a_{21}}{x+1}\mathrm{d}x + \int\frac{a_{22}}{(x+1)^2}\mathrm{d}x + \int\frac{b_{11} x + c_{11}}{x^2 - 3x + 4} \mathrm{d}x



The constants
aij,bij,cijRa_{ij},b_{ij}, c_{ij}\in\mathbb{R}
have to be found e.g. using the Heaviside cover up method.
>>
cool nad thanks
>>
If you have a function that cannot be integrated but which has a fourth
derivative, you can approximate the definite integral to a high degree of
accuracy using Simpson's rule.

Choose
Δx\Delta x
such that
[a,b][a,b]
is divided into an even number of subintervals.

abf(x)dx=limΔx0+Δx3[f(x0)+4f(x1)+2f(x2)+4f(x3)+2f(x4)+...+4f(xn1)+f(xn)]\int_{a}^b f(x)\,dx = \lim_{\Delta x \to 0^+} \frac{\Delta x}{3}[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + ... + 4f(x_{n-1}) + f(x_n)]


For the error, find the maximum value
MM
of
f(4)(x)f^{(4)}(x)
on
[a,b][a,b]
.
ba180M(Δx)4\frac{b-a}{180}M(\Delta x)^4


File: Saudi combined e.png ( 334.65 KB , 2033x1433 , 1663822754492.png )

Image
Peak oil.

It's mathematically impossible for you to not die within a year.

I posted with the alias mustang on pol, you can see in archive.
>>
>>308
I lived


File: CubeChart.svg.png ( 28.29 KB , 420x368 , 1699220700580.png )

Image
What do people make of these numbers?
>>
>>523
seems to be a relation between numbers and their cubes
>>
>>528
But the cube of 2 is like eight, and the cue of eight is nowhere near 2
512?
Where the fuck did 51 come from?