[ home ] [ math / cs / ai / phy / as / chem / bio / geo ] [ civ / aero / mech / ee / hdl / os / dev / web / app / sys / net / sec ] [ med / fin / psy / soc / his / lit / lin / phi / arch ] [ off / vg / jp / 2hu / tc / ts / adv / hr / meta / tex ] [ chat ] [ wiki ]

Viewing source code

The following is the source code for post >>>/math/863

Hello everyone. I have seen a lot of threads(book threads, IMO advice...) that seem to exist solely so people give advice and give comments on your study material.
So I had an idea for a thread where we: state our goals, name the books(video series and other material) we plan to cover in a certain order, give an approximate deadline and other mathchan users can give suggestions, meaningful comments, advice and pointers to others!
I'll start:
My goal is to develop enough knowledge before I go to university where I hope to take advanced classes and spend more time on advanced topics while simultaneously getting myself ready for the national math competition(not my main focus, just for fun)
《Elementary math 1 i 2 notes》
-notes from my local university where they want to "bridge the gap between high-school and university math" (introductory logic, set theory, relations, functions, number theory, Euclidian geometry, vector spaces and analytic geometry)

《A Transition to Advanced Mathematics by Smith, Eggen, and St. Andre /// 101 problems in algebra》
-covers similair material as the already meantioned notes but in more detail

--------------I am here----------------

《Analysis I notes》
-notes from the local university, this time in calculus/analysis (what European universities call analysis is almost always just rigorous calculus or very elementary analysis since we cover calculus in HS)

《Linear Algebra Shilov》

《Šime Ungar, Analiza 3》
-same deal as before, rigorous calculus/ begginer analysis book for R^n

《101 problems in various topics, Andreescu books, generatingfunctionology, Problem solving strategies by Engels》

《Elements of Set Theory by Enderton》

《Introduction to Logic: and to the Methodology of Deductive Sciences by Alfred Tarski》

《An Introduction to the Theory of Numbers by Niven, Zuckerman, and Montgomery》
-mainly for competitive math but also as an introductory text

《The USSR olympiad problem book》

《Algebra by Artin》

《The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities by Steele》
-half for competitive maths, half since I heard analysis problems demand a lot of inequality knowledge

《Amann and Escher Analysis series》
-all three books

I hope to cover everything stated above in a 1.5-2 years. I covered the things above the "I'm here line" in three weeks while doing most of the exercises.