[ home ] [ math / cs / ai / phy / as / chem / bio / geo ] [ civ / aero / mech / ee / hdl / os / dev / web / app / sys / net / sec ] [ med / fin / psy / soc / his / lit / lin / phi / arch ] [ off / vg / jp / 2hu / tc / ts / adv / hr / meta / tex ] [ chat ] [ wiki ]

Viewing source code

The following is the source code for post >>>/math/798

Solve these problems if you're not a retard:

Let $\langle a \rangle = (a_1, a_2, \ldots)$ denote an infinite sequence of positive integers.
$\rightarrow$ Prove that there is no $\langle a \rangle$ such that $\gcd(a_i + j, a_j + i) = 1$ for all $i \neq j$.
Let $p \neq 2$ be a prime.
$\rightarrow$ Prove that there is an $\langle a \rangle$ such that $\gcd(a_i + j, a_j + i) = p$ for all $i \neq j$.