[ home ] [ math / cs / ai / phy / as / chem / bio / geo ] [ civ / aero / mech / ee / hdl / os / dev / web / app / sys / net / sec ] [ med / fin / psy / soc / his / lit / lin / phi / arch ] [ off / vg / jp / 2hu / tc / ts / adv / hr / meta / tex ] [ chat ] [ wiki ]

Viewing source code

The following is the source code for post >>>/math/779

>>299
Claim: \eqn{0.999...\neq 1}
Proof: We use induction. The base case is trivial \eqn{0.9 \neq 1}. Next we introduce notation that \[0.9_n = 0.9999... n times].
Now the inductive step: we assume \eqn{0.9_n \neq 1}. Then trivially \eqn{0.9_{n+1} \neq 1}. It might help to notice \eqn{1 - 0.9_{n+1} \neq 0 }
This implies that \eqn{0.9_n\neq 1 \forall n \in \mathbb{N}}
\eqn{\therefore 0.999... \neq 1}