Viewing source code
The following is the source code for post
>>>/math/631Not OP, but I derived it 2 days ago while using toilet.
And it was for the most basic version of the problem:
\( x^3 + x + a = 0 \)
But it can probably be transformed into any cubic formula if you set \(x = sy+t \) and multiply left side by some constant.
I didn't really derive it, I just guessed it should be in form:
\( x = \sqrt[3]{p + q} + \sqrt[3]{p - q} \)
When I use it in the equation, I get:
\( (\sqrt[3]{p + q} + \sqrt[3]{p - q})^3 + \sqrt[3]{p + q} + \sqrt[3]{p - q} + a = 0 \)
\( p + q + 3\sqrt[3]{p + q}\sqrt[3]{p + q}\sqrt[3]{p - q} + 3\sqrt[3]{p + q}\sqrt[3]{p - q}\sqrt[3]{p - q} + p - q \)
\( + \sqrt[3]{p + q} + \sqrt[3]{p - q} + a = 0 \)
\( 2p + 3\sqrt[3]{p + q}\sqrt[3]{p^2 - q^2} + 3\sqrt[3]{p - q}\sqrt[3]{p^2 - q^2} + \sqrt[3]{p + q} + \sqrt[3]{p - q} + a = 0 \)
\( 2p + 3(\sqrt[3]{p + q} + \sqrt[3]{p - q})\sqrt[3]{p^2 - q^2} + \sqrt[3]{p + q} + \sqrt[3]{p - q} + a = 0 \)
\( (2p + a) + ( 1 + 3\sqrt[3]{p^2 - q^2})(\sqrt[3]{p + q} + \sqrt[3]{p - q}) = 0 \)
In order for this equation to be satisfied I'll break this equation in two:
\(
\begin{cases}
2p + a = 0 \\
( 1 + 3\sqrt[3]{p^2 - q^2})(\sqrt[3]{p + q} + \sqrt[3]{p - q}) = 0
\end{cases}
\)
\(
\begin{cases}
p = -\frac{a}{2} \\
1 + 3\sqrt[3]{p^2 - q^2} = 0
\end{cases}
\)
Then we solve \(q\):
\(1 + 3\sqrt[3]{-\frac{a^2}{4} - q^2} = 0\)
\(\sqrt[3]{-\frac{a^2}{4} - q^2} = -\frac{1}{3}\)
\(-\frac{a^2}{4} - q^2 = -\frac{1}{27}\)
\(q^2 = -\frac{a^2}{4} + \frac{1}{27}\)
\(q = \sqrt{-\frac{a^2}{4} + \frac{1}{27}}\)
and thus:
\( x = \sqrt[3]{-\frac{a}{2} + \sqrt{-\frac{a^2}{4} + \frac{1}{27}}} + \sqrt[3]{-\frac{a}{2} - \sqrt{-\frac{a^2}{4} + \frac{1}{27}}} \)
Also shoutout to the admin. Some fan of Lukyon on soyjak.sharty thinks that you are the good person to discover if manga Lukyon is a virgin. A bit silly question, but he really begged me to ask it. :(