[ home ] [ math / cs / ai / phy / as / chem / bio / geo ] [ civ / aero / mech / ee / hdl / os / dev / web / app / sys / net / sec ] [ med / fin / psy / soc / his / lit / lin / phi / arch ] [ off / vg / jp / 2hu / tc / ts / adv / hr / meta / tex ] [ chat ] [ wiki ]

Viewing source code

The following is the source code for post >>>/math/472

Is possible extend Ruffini's regola to irrational equation with small edit?
e.g. The result of equation \begin{equation} -x^2+6x+22 \sqrt{x+2}+24=0 \end{equation} is x=14
using Ruffini \begin{equation} 
\begin{array}{c|c c c|c}
 & -1  & +6 & +22\sqrt{16} & +24 \\
14 & &-14 & -112 & -24 \\
\hline
 &-1 & -8 & -\frac{24}{14} & 0\\
\end{array}
\end{equation}
but the quoto is \begin{equation} -x-8+\frac{22}{\sqrt{x+2}+4}\end{equation}