Viewing source code
The following is the source code for post
>>>/math/472Is possible extend Ruffini's regola to irrational equation with small edit?
e.g. The result of equation \begin{equation} -x^2+6x+22 \sqrt{x+2}+24=0 \end{equation} is x=14
using Ruffini \begin{equation}
\begin{array}{c|c c c|c}
& -1 & +6 & +22\sqrt{16} & +24 \\
14 & &-14 & -112 & -24 \\
\hline
&-1 & -8 & -\frac{24}{14} & 0\\
\end{array}
\end{equation}
but the quoto is \begin{equation} -x-8+\frac{22}{\sqrt{x+2}+4}\end{equation}