[ home ] [ math / cs / ai / phy / as / chem / bio / geo ] [ civ / aero / mech / ee / hdl / os / dev / web / app / sys / net / sec ] [ med / fin / psy / soc / his / lit / lin / phi / arch ] [ off / vg / jp / 2hu / tc / ts / adv / hr / meta / tex ] [ chat ] [ wiki ]

Viewing source code

The following is the source code for post >>>/math/338

Let \(g(X)\) be the minimal poly of \(\gamma\). Then we have
\[ \mathbb{Z}[X]/\langle g(X) \rangle \cong \mathbb{Z}[\gamma] \]
So then we can see that
\[ \mathbb{Z}[\gamma]/\langle p \rangle \cong \mathbb{Z}[X] / \langle g(X), p \rangle \]

My question: is this a general rule of rings that given a homomorphism
\[ \phi : R/I \rightarrow S \]
with ker \(\phi = J\), then
\[ R/(I + J) \cong S/J \]
?