>>332 Thank you for joining my friend. What brings you to mathchan? How can it grow? >gaps between two closest points are small Hackenbush is very interesting. https://www.youtube.com/watch?v=ZYj4NkeGPdM&t=1260 https://www.goodreads.com/book/show/1293306.Winning_Ways_for_Your_Mathematical_Plays - >limits \math{|\mathbb{R}| = |\mathbb{Z}|} >muh \textbf{diagonal} argument Invalid. Consider the following countably infinite list: \code{. First Number: 0 Second Number: 0.1 Third Number: 0.11 Fourth Number: 0.111 Fifth Number: 0.1111 Sixth Number: 0.11111 Seventh Number: 0.111111 Eighth Number: 0.1111111 Ninth Number: 0.11111111 Tenth Number: 0.111111111 (... continues ...) } \textbf{Question}: Is the following number in the list? \math{9^{-1}} \textit{i.e.} \math{\frac{1}{9}} \textit{i.e.} \math{0.\overline{1}} \textit{i.e.} \math{0.111111111111\ldots} The \textbf{diagonal} argument claims \math{0.\overline{1}} isn't in the list. \textit{(Because \math{0.\overline{1}} differs from the first number in the tenths digit, the second number in the hundredths digit, the third number in the thousandths digit, the fourth number in the ten-thousandths digit, the fifth number in the hundred-thousandths digit, and this will continue forever, then allegedly \math{0.\overline{1}} is not in the list.} But obviously, \math{0.\overline{1}} is in the list. The list is directly constructed so as to contain \math{0.\overline{1}}. >but muh infinite digits The decimal number \math{0.\overline{1}} contains \textbf{countably infinite} digits. The list is a \textbf{countably infinite} list. Contradiction. Therefore the \textbf{diagonal} argument is invalid. P.S. For the curious, the countably infinite list which contains all real numbers is simply \code{ 0 , 0.1 , 0.2 , 0.3 , 0.4 , 0.5 , 0.6 , 0.7 , 0.8 , 0.9 , 0.01 , 0.11 , 0.21 , 0.31 , 0.41 , 0.51 , 0.61 , 0.71 , 0.81 , 0.91 , 0.02 , 0.12 , 0.22 , 0.32 , 0.42 , 0.52 , 0.62 , 0.72 , 0.82 , 0.92 , 0.03 , 0.13 , 0.23 , 0.33 , 0.43 , 0.53 , 0.63 , 0.73 , 0.83 , 0.93 , 0.04 , 0.14 , 0.24 , 0.34 , 0.44 , 0.54 , 0.64 , 0.74 , 0.84 , 0.94 , 0.05 , 0.15 , 0.25 , 0.35 , 0.45 , 0.55 , 0.65 , 0.75 , 0.85 , 0.95 , 0.06 , 0.16 , 0.26 , 0.36 , 0.46 , 0.56 , 0.66 , 0.76 , 0.86 , 0.96 , 0.07 , 0.17 , 0.27 , 0.37 , 0.47 , 0.57 , 0.67 , 0.77 , 0.87 , 0.97 , 0.08 , 0.18 , 0.28 , 0.38 , 0.48 , 0.58 , 0.68 , 0.78 , 0.88 , 0.98 , 0.09 , 0.19 , 0.29 , 0.39 , 0.49 , 0.59 , 0.69 , 0.79 , 0.89 , 0.99 , 0.001, 0.101, 0.201, 0.301, 0.401, 0.501, 0.601, 0.701, 0.801, 0.901, 0.011, 0.111, 0.211, ... }