\textbf{Bernoulli's differential equation:} ,,\qquad \boxed{y' + Py = Qy^\alpha} \textbf{General solution:} Sbustitute \[y=z^r\] ,,\qquad rz^{r-1}z' = Pz^r = Qz^{r\alpha} Divide both sides with \[ rz^{r-1}\] ,,\qquad z' + \frac{P}{r} z = \frac{Q}{r}z^{r\alpha - r +1} Setting \[r\] such that \[r\alpha - r + 1 = 0\] (i.e. \[r = \frac{1}{1-\alpha}\]) Bernoulli's equation becomes a linear differential equation of the first order that can be solved for \[z\]. ,,\qquad z = e^{-(1-\alpha)\int P\mathrm{d}x}\left(C + (1-\alpha)\int Qe^{(1-\alpha)\int P\mathrm{d}x}\mathrm{d}x\right) Substituting back \[y = z^r,\quad y=z^{\frac{1}{1-\alpha}},\quad z = y^{1-\alpha}\]: ,,\qquad \boxed{y = \left({e^{-(1-\alpha)\int P\mathrm{d}x}\left(C + (1-\alpha)\int Qe^{(1-\alpha)\int P\mathrm{d}x}\mathrm{d}x\right) }\right)^{\frac{1}{1-\alpha}}} \textbf{Example:} ,,\qquad y' - y = xy^5 \textbf{Solution:} Substituting \[y = z^{-1/4},\quad y' = -\frac{1}{4}z^{-5/4}z'\]: ,,\qquad -\frac{1}{4} z' - z = x Solving this linear quation for \[z\] and substituting \[z = y^{-4}\] should yield ,,\qquad y^{-4} + x - \frac{1}{4} = Ce^{-4x} ,,\qquad