\textbf{Linear differential equation of the first order:} ,,\qquad \boxed{y' + Py = Q} \textbf{General solution:} Multiply both sides with \[e^{\int P\mathrm{d}x}\] ,,\qquad y'e^{\int P\mathrm{d}x} + Pye^{\int P\mathrm{d}x} = Qe^{\int P\mathrm{d}x} Collapse left side \[(fg)' = f'g + fg'\] ,,\qquad \left(ye^{\int P\mathrm{d}x}\right)' = Qe^{\int P\mathrm{d}x} Integrate both sides ,,\qquad ye^{\int P\mathrm{d}x} = C + \int Qe^{\int P\mathrm{d}x}\mathrm{d}x Multiply both sides with \[e^{-\int P\mathrm{d}x}\] ,,\qquad \boxed{y = e^{-\int P\mathrm{d}x}\left(C + \int Qe^{\int P\mathrm{d}x}\mathrm{d}x \right)} \textbf{Example:} ,,\qquad \boxed{y' + 2xy = 4x} \textbf{Solution:} Since \[P = 2x,\enspace Q=4x\]: ,,\qquad y = e^{-x^2}\left(C + \int 4xe^{x^2}\mathrm{d}x\right) = e^{-x^2}(C + 2e^{x^2}) = \boxed{Ce^{-x^2} + 2}