[ home ] [ math / cs / ai / phy / as / chem / bio / geo ] [ civ / aero / mech / ee / hdl / os / dev / web / app / sys / net / sec ] [ med / fin / psy / soc / his / lit / lin / phi / arch ] [ off / vg / jp / 2hu / tc / ts / adv / hr / meta / tex ] [ chat ] [ wiki ]

Viewing source code

The following is the source code for post >>>/math/193

\textbf{Double angle formulas:} 

By setting \[\beta = \alpha\] we get double angle formulas. There is one double-angle formula for sine but three useful double angle formulas for cosine. The three are easily from each other using the fundamental identity \[\sin^2(\alpha) + \cos^2(\alpha) = 1\]

,,\qquad \sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)
\[\qquad\begin{aligned} \cos(2\alpha) &= \cos^2(\alpha) - \sin^2(\alpha)\\&= 1 - 2\sin^2(\alpha)\\&= 2\cos^2(\alpha) - 1\end{aligned}\]

In additon, double angle formulas can be expressed in terms of a tangent:

,,\qquad \sin(2\alpha) = \frac{2\tan(\alpha)}{1 + \tan^2(\alpha)}
,,\qquad \cos(2\alpha) = \frac{2\tan(\alpha)}{1 + \tan^2(\alpha)}
,,\qquad \tan(2\alpha) = \frac{2\tan\alpha}{1 - \tan^2\alpha}