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Abstract

In constructing functions having a certain invariance and a given set of zeros, the
zeta regularized product

∐∏
and its natural generalization

∐
•
∏
play important roles. To

deal with wider class of sequences, we introduce an extended version
∐••∏n an of such

regularizations. This allows us to treat the case where the attached zeta function of
{an}n has even a log-singularity at the origin. We discuss several examples of the
type

∐••∏n ϕ(an − x) for choosing an = n, an = the essential zeros ρ of zeta functions,
etc., especially for the trigonometric functions ϕ. As one of the applications, we give
a criterion for the validity of a distribution formula for the essential zeros of ζ(s) in
terms of

∐••∏, which is a weaker version of the Riemann Hypothesis (RH).
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1 Introduction

For a given sequence a = {an}n∈I of non-zero complex numbers, the zeta regularized

product
∐∏

n∈I an of a is defined by∐∏
n∈I

an := exp
(
−∂sζa(s)

∣∣
s=0

)
(1.1)

when the attached zeta function ζ
a
(s) :=

∑
n∈I a

−s
n is analytically continued to some region

containing the origin s = 0 and holomorphic at s = 0 (see, e.g. [D2]). Here ∂s denotes the

partial differential operator with respect to s.

In constructing functions having a certain invariance and a given set of zeros, the zeta

regularized product plays important roles. Particularly, the zeta regularized product
∐∏

defines a determinant of an operator A by detA :=
∐∏

n λn where λn denotes the eigenvalue of

A. For instance, a Selberg zeta function ZΓ(s) (see Section 5.3) has a determinant expression

via the Laplacian ∆Γ of the Riemann surface (see, e.g. [V]). Hence the analogue of the

Riemann Hypothesis of ZΓ(s) follows from the determinant expression because ∆Γ is positive

definite. All zeta functions which satisfy an analogue of the Riemann Hypothesis are known

to be having such determinant expressions. The most important question is whether one

can associate a determinant expression to a given zeta function via some self (skew-)adjoint

operator. As to the Riemann zeta function, there is a deep observation [D1], [D2] (see also

[KuOW] for some trial) in this direction.

Among various features of zeta regularized products, we focus our attention on the func-

tional aspect in this paper; zeta regularization methods often allow us to express a function

in very transparent (or rather intuitive) manner as well as to construct a function equipped

with a certain invariance such as (quasi-)periodicity. For instance, the function

SZ(x) :=
∐∏
n∈Z

(n− x)

essentially gives the sine function and hence has a periodicity as is expected from its form

(see Example 3.2). It is also seen that the zeros of SZ(x) are exactly given by x = n (n ∈ Z).

In general, for a given sequence a and a good function ϕ, we may expect that the product

Da(x;ϕ) :=
∐∏
n∈I

ϕ(an − x)

(if it exists) defines a function whose zeros are exactly given by the set∐
n∈I

{
x ∈ C

∣∣ ϕ(an − x) = 0
}
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and is piecewise holomorphic.

However, the situation we can apply the zeta regularization method is rather restricted.

For instance, if we take a geometric sequence a = {qn}n≥0 (q > 1) typically, then the

attached Dirichlet series

ζa(s) :=
∑
n≥0

a−sn =
1

1 − q−s

is analytically continued to the whole s-plane but it has a simple pole at the origin s = 0.

This shows that the zeta regularized product
∐∏

n q
n is not defined. In order to handle such

cases, an extended notion called a dotted product has been introduced in [KuW2] (see

also [I]). This dotted product
∐
•
∏

is actually defined by

∐
•

∏
n∈I

an := exp

(
−Res

s=0

ζa(s)

s2

)
(1.2)

for a sequence a = {an}n∈I when the (analytically continued) zeta function ζa(s) is mero-

morphic at the origin s = 0. Notice that this dotted product provides a generalization of the

original regularized product since ζ ′
a
(0) = Ress=0 ζa(s)/s2 if ζa(s) is holomorphic at s = 0.

We also remark that this definition of a dotted product is still applicable when the origin

s = 0 is an isolated singularity of ζ
a
(s) (see Remark 3.1). By using this new regularization,

we can treat, for instance, regularized products of the values of trigonometric functions and

those of q-numbers over the lattice Z and the semi-lattice Z≥0, which allow us to construct

easily a function having some translation property such as periodicity. These products are

mainly exhibited in Sections 5.1 (see also Remark 5.4).

Still, there exist natural situations we need a further extension of the zeta regularization∐
•
∏

. Let us show such an example. It is well-known that if we put ζ̂(s) := ζ(s)πs/2Γ(s/2)

then the functional equation of the Riemann zeta function can be written in a symmet-

ric way; ζ̂(1 − s) = ζ̂(s). Let ζl∞(s) be the higher Riemann zeta function defined by

ζl∞(s) :=
∏

n≥1 ζ(s+ ln) [KuMW]. Then, in the course of the study for obtaining a symmet-

ric functional equation of ζl∞(s) similarly, it is quite helpful to introduce a function defined

(naively) by

Sl(x) :=
∐
�
∏

Im(ρ)>0

sin
π(ρ− x)

l
,(1.3)

especially, in order to determine an explicit form of the completion ζ̂l∞(s) of ζl∞(s) (see

Example 5.1). Here
∐
�
∏

denotes a suitably formulated product over the non-trivial zeros ρ of

the Riemann zeta function ζ(s) in the upper half plane. One possibility for defining such a
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function is to employ a zeta regularized product as the product
∐
�
∏

in (1.3). However, in the

case of Sl(x), the associated zeta function

Ll(s, x) :=
∑

Im(ρ)>0

{
sin

π(ρ− x)

l

}−s
(1.4)

has a log-singularity at s = 0 according to the famous result of Cramér [Cr] in 1919. In order

to overcome such difficulties, we introduce much further generalization
∐••∏ of zeta regularized

products described above (see Section 2). We show that a function defined via this new zeta

regularized product has a Weierstrass canonical product expression, that is, it has a desired

set of zeros counting with multiplicity like in [V], [I], [KiKuSW1].

In Section 4, we deal with various regularized products of the values of trigonometric

functions. In this trigonometric case, the presence of a differential equation is useful for

the discussion. In particular, as applications of the regularized product
∐••∏, we provide

several interesting examples in Section 5 relating such as the Riemann Hypothesis (Theorem

5.4), the Selberg’s 1/4-conjecture (Theorem 5.5 and Remark 5.7), the determinant of the

trigonometric function of eigenvalues of a Laplacian of a Riemann surface and certain q-

analogues connected with the Jackson q-gamma function (see, e.g. [AAR]), etc.

Furthermore, we make an experimental study concerning the ‘regularized product’ of

the values of the elliptic theta functions in Section 6. We propose a candidate of a suitable

regularization and show that the ‘regularized product’ of the theta functions ϑ(x+nt, t) over

the lattice Z produces essentially the theta function again while the direction of periodicity

and that of quasi-periodicity are switched. This result is immediately extended to the so-

called Jacobi forms (see, e.g. [EZ]).

We hope also that in general one may use a difference-differential equation of ϕ (if

any) to discuss a product of ϕ(an − x)’s. A part of Section 6 is devoted to give a small

calculation about ℘(z) as an example of such a situation. In the last position we remark

on the construction of certain new zeta extensions in the sense of [KuW1] by means of

regularized products.

Convention

In this paper we distinguish three kinds of product symbols
∐∏

,
∐
•
∏

and
∐••∏ in order to specify

which regularization we actually need for a given sequence. We also use the symbol
∐
�
∏

to

indicate a regularized product which is neither specified nor formulated suitably.
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Throughout the paper we fix the log-branch by

log z = log |z| + i arg z (−π ≤ arg z < π) .(1.5)

Remark that the values of zeta regularized products depend on the choice of the log-branch.

We denote by C the entire complex plane, R the real axis, Z the lattice consisting of

all rational integers and Z≥0 the semi-lattice consisting of non-negative integers. We also

denote by Q the rational number field.

2 Double-dotted products

In this section we introduce the notion of a double-dotted product or a ddotted prod-

uct in short, which is a generalization of a zeta regularized product
∐
•
∏

. Employing this

regularized product, we can treat the case where the attached Dirichlet series has even a

log-singularity at the origin.

2.1 Definition of ddotted products

Let a = {an}n∈I be a sequence of non-zero complex numbers. We define the associated zeta

function (or the Dirichlet series) ζa(s) of a by

ζ
a
(s) :=

∑
n∈I

a−sn

which is supposed to be convergent absolutely for Re(s) � 1.

Assume that there exists a finite collection of functions {Qm(s; a)}Mm=1 which are mero-

morphic around the origin s = 0 such that the difference

P (s; a) := ζ
a(s) −

M∑
m=1

Qm(s; a)(log s)m

is analytically continued to the some region containing the origin as a single-valued mero-

morphic function. We also suppose that the zeta function ζa(s) itself is also analytically

continued to the right half plane Re(s) > 0. Then we say ζ
a
(s) (and also the sequence a) is

regularizable, and we call P (s; a) the meromorphic part of ζa(s) at s = 0. The order of

the (possible) pole of P (s; a) at the origin s = 0 is called a depth of ζ
a
(s).

When the zeta function ζa(s) is regularizable, we define its linear term at s = 0 by

LT
s=0

ζa(s) := Res
s=0

P (s; a)

s2
.
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In terms of this linear term LT s=0 ζa(s) of a given zeta function ζa(s), we define the following

extended version of zeta regularized products.

Definition 2.1 (Ddotted regularization). Let a = {an}n∈I be a regularizable sequence.

Define the ddotted product of a by∐
••

∏
n∈I

an := exp
(
−LT

s=0
ζa(s)

)
.(2.1)

Here ζa(s) is the associated zeta function of a.

It is easy to see that the meromorphic part of a given regularizable zeta function is

uniquely determined once we fix the branch of s. Namely, this truncation procedure is

legitimate. Hence the definition of the ddotted regularized product is well-defined.

Remark 2.1. It is readily observed that the ddotted product
∐••∏n an of a = {an}n is nothing

but the dotted product
∐
•
∏

n an of a when the attached zeta function ζa(s) is meromorphic at

s = 0 (i.e. ζ
a(s) = P (s; a)).

The following proposition is elementary but quite important.

Proposition 2.1. When all of the appearing ddotted products exist, we have∐
••

∏
n∈I�J

an =
∐
••

∏
n∈I

an
∐
••

∏
n∈J

an,(2.2)

∐
••

∏
n∈I

akn =

(∐
••

∏
n∈I

an

)k

,(2.3)

∐
••

∏
n∈I

λan = exp

(
−

µ+1∑
n=1

(− log λ)n

n!
LT
s=0

snζa(s)

)∐
••

∏
n∈I

an,(2.4)

∐
••

∏
n∈I

an =
∐
••

∏
n∈I

an,(2.5)

for k > 0 and λ > 0. Here µ in (2.4) denotes the depth of the attached zeta function ζa(s)

of the sequence a = {an}n∈I and z the complex conjugate of z.

Proof. The formulas (2.2) and (2.3) are immediate by the definition of the ddotted products.

The formula (2.4) is obtained by a similar discussion in [KiKuSW1]. The formula (2.5)

follows from the equality ζā(s) = ζ
a
(s̄) where ā = {an}n∈I is the complex conjugate of

a = {an}n∈I .

Remark 2.2. In general, two regularized products
∐••∏n∈I anbn and

∐••∏n∈I an
∐••∏n∈I bn are differ-

ent. Actually, there exists an anomaly between them.
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2.2 Functions defined by zeta regularizations

Let ϕ be a meromorphic function and a = {an}n∈I be a sequence of complex numbers. We

are interested in the function of the form

Da(x;ϕ) :=
∐
••

∏
n∈I

ϕ(an − x).(2.6)

Using this zeta regularization, we can treat much wider class of functions ϕ. We assume

that the sequence a satisfies ϕ(an) 
= 0 for any n ∈ I; we call this assumption the zero-free

condition. This assumption is not essential but for simplicity. Actually, from the formula

(2.2), it is clear that one can easily remove a finite number of exceptions of an’s in the

regularized product of a. Namely, if we take a finite subset E ⊂ I, then the ddotted product∐••∏n∈I(an − x) is divided as∐
••

∏
n∈I

ϕ(an − x) =
∏
n∈E

ϕ(x− an) ×
∐
••

∏
n∈I\E

ϕ(x− an).

We denote by ζ(s, x; a;ϕ) the associated zeta function

ζ(s, x; a;ϕ) =
∑
n∈I

ϕ(an − x)−s,

and assume that ζ(s, x; a;ϕ) is regularizable for a generic x ∈ C. Precisely, if Re(s) � 1,

then the Dirichlet series ζ(s, x; a;ϕ) converges absolutely and uniformly (as a function with

respect to x) for each compact subset of C which does not contain any zeros of ϕ(an − x).

We also denote by P (s, x; a;ϕ) the meromorphic part of ζ(s, x; a;ϕ).

Remark 2.3. By definition it is easy to see that the operations LT and ∂x is compatible,

that is, we have

LT
s=0

(
∂xζ(s, x; a;ϕ)

)
= ∂x

(
LT
s=0

ζ(s, x; a;ϕ)
)

for a regularizable zeta function ζ(s, x; a;ϕ).

In general, we cannot say anything about properties of the function Da
(x;ϕ) defined by

a zeta regularized product (2.6) a priori. However, we frequently observe that the function

D
a
(x;ϕ) is piecewise holomorphic. More precisely, we have

A typical situation. There exist several connected domains {Uj}j such that Da(x;ϕ) :=∐••∏n∈I ϕ(an− x) gives a holomorphic function on each domain Uj but is discontinuous on the

boundary ∂Uj of Uj . This discontinuity is originated from the fact that the logarithmic func-

tion log x is multi-valued. If we denote by Da(x;ϕ;Uj) :=
∐••∏n∈I ϕ(an−x)

∣∣
Uj

the restriction of
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D
a(x;ϕ) on Uj, then each Da(x;ϕ;Uj) is analytically continued to the whole x-plane as an en-

tire function. We denote by D̃a(x;ϕ;Uj) = :
∐••∏n∈I ϕ(an − x) :Uj

the extension of Da(x;ϕ;Uj)

in order to distinguish this function from the original function D
a(x;ϕ) =

∐••∏n∈I ϕ(an − x),

and call it the normal product associated with the initial domain Uj . Remark that two

functions D̃
a
(x;ϕ;Ui) and D̃

a
(x;ϕ;Uj) are not the same function in general if Ui ∩ Uj = ∅,

but their difference may be an elementary factor such as the exponential of a polynomial

function. For a typical example, see Example 3.2. See also Figure 1 (which shows the case

where ϕ is periodic — the most interesting case). We suppress the symbol Uj and simply

write D̃a(x;ϕ) = :
∐••∏n∈I ϕ(an − x) : when the initial domain Uj is clear from the context.

U0 U1U−1U−2 U2

D̃
a
(x;ϕ;U0) D̃

a(x;ϕ;U1)D̃a(x;ϕ;U−1)

D
a
(x;ϕ)

Figure 1: A typical situation (conceptual)

The graph of Da(x;ϕ) is drawn by thick lines. Each restriction Da(x;ϕ;Uj) of Da(x;ϕ) on Uj is
holomorphic on Uj and has an extension D̃a(x;ϕ;Uj) which is entire.

For instance, when ϕ(z) = z or sinh z, the function Da(x;ϕ), if it exists, is actually

continued to the whole plane as an entire function. See Sections 3 and 4 for details.

Remark 2.4. When ζ(s, x; a;ϕ) is meromorphic (i.e. ζ(s, x; a;ϕ) = P (s, x; a;ϕ)), the ddot-

ted regularized product coincides with the dotted product; recall the definition (1.2) of a

dotted product.
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3 Linear products

Before going to discuss interesting cases of dotted and ddotted products, for the sake of

understanding the situation well, we give here some examples when ϕ is a linear function.

Example 3.1. By the Lerch’s calculation [L] in 1894 concerning the Hurwitz zeta function

ζ(s, x) :=
∑∞

n=0(n + x)−s, we have the zeta regularized product expression of the gamma

function √
2π

Γ(x)
=

∞∐∏
n=0

(n + x).

This formula holds for x ∈ C \Z and integral points x = −n (n = 0, 1, 2, . . . ) are removable

singularity; in fact, we see that limx→−k
∐∏∞

n=0(n + x) = 0 for k = 0, 1, 2, . . . . In this case

the regularized product
∐∏

n≥0(n + x) itself defines an entire function. We notice that this

expression respects the location of zeros in a very apparent way and the functional equation

is intuitively understood:

√
2π

Γ(x)
=

∞∐∏
n=0

(n + x) = x

∞∐∏
n=1

(n + x) = x

√
2π

Γ(x + 1)
=⇒ Γ(x + 1) = xΓ(x).

Some other properties of Γ(x) derived easily from the expression such as the multiplication

formula of Gauss-Legendre, see [KiKuSW2].

As we mentioned in Section 2.2, the function Da(x) =
∐∏

n∈I(an − x) does not define an

entire function in general but a piecewise holomorphic function. However, if we restrict the

function D
a(x) on a certain domain U ⊂ C and denote it by Da(x;U) so that Da(x;U)

is holomorphic on U , then Da
(x;U) is continued to the whole x-plane and the extension

D̃
a
(x;U) is an entire function (see Theorem 3.1 below). A typical example is as follows (cf.

Figure 1).

Example 3.2. The ring sine function SZ(x) of Z

SZ(x) :=
∐∏
n∈Z

(n− x) =




1 − e2πix x ∈ U+

1 − e2πix x ∈ R \ Z

1 − e−2πix x ∈ U−

essentially gives the sine function and hence (piecewisely) has a periodicity as is expected

from its form (see [KuMOW]). Here we put U+ =
{
x ∈ C

∣∣ Imx > 0
}

and U− =
{
x ∈ C

∣∣
Imx < 0

}
. The function SZ(x) is holomorphic in U+ and U− respectively, and discontinuous

on R \ Z (piecewise holomorphic function on C). The integral points x = k (k ∈ Z)
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are removable singularities; in fact, we see that limx→k SZ(x) = 0. The canonical product

expression of SZ(x) is expressed as

SZ(x) = x exp
(
f(x;U±)

)∏
n�=0

(
1 − x

n

)
exp

(x
n

) (
x ∈ U±)

where the polynomial function f(x;U±) is given by

f(x;U+) = −πix + log 2π +
1

2
πi,

f(x;U−) = −3πix + log 2π − 1

2
πi.

This shows that two entire functions S̃Z(x;U+) and S̃Z(x;U−) are actually different. How-

ever, we remark that the product SZ(x)SZ(−x) defines an entire function.

Example 3.3 ([KuMOW]). Let Q(τ)/Q be an imaginary quadratic extension and Z[τ ]

be the ring of integers of Q(τ). The ring sine function SZ[τ ](x) of Z[τ ] is calculated as

SZ[τ ](x) :=
∐∏
m,n∈Z

(m + nτ − x)

= (1 − e2πix)

∞∏
n=1

(1 − e2πi(nτ+x))(1 − e2πi(nτ−x)) (0 < Imx < Im τ) .

(3.1)

Though it is expected from its form that the function SZ[τ ](x) is double-periodic, it is not.

Actually, it essentially gives the elliptic theta function ϑ(x, τ); the multi-valuedness of the

attached zeta function yields the shift of the exponential factor according to the translation

of the direction τ . See Figure 1.

When one takes the linear function ϕ(z) = z as in the examples above, a similar discussion

as in [V], [I] assures that the function D
a
(x) =

∐••∏n(an − x) has a Weierstrass canonical

product expression. In fact, since LT and ∂x is compatible (see Remark 2.3), we have the

Theorem 3.1. Let a = {an}n∈I be a sequence of non-zero complex numbers and U a

connected domain in C. Denote by p the least non-negative integer such that the series∑
n∈I a

−p−1
n converges absolutely. Suppose that the zeta function ζa(s, x) :=

∑
n∈I(an − x)−s

is regularizable for any x ∈ U . Then there exists a polynomial function fa(x;U) of x de-

pending on a and U such that

D
a(x;U) :=

∐
••

∏
n∈I

(an − x)
∣∣∣
U

= exp (fa(x;U))
∏
n∈I

(
1 − x

an

)
exp

(
p∑

m=1

1

m

(
x

an

)m
)

holds for x ∈ U . In particular, the function Da(x;U) has an analytic continuation D̃a(x;U)

to the whole x-plane as an entire function.
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Remark 3.1. Even if we allow the situation that the ‘meromorphic’ part P (s, x; a) of the

attached zeta function ζa(s, x) has an essential singularity at s = 0, the regularized product∐••∏n(an−x) is still defined and Theorem 3.1 holds. However, the function fa(x;U) appearing

in the theorem is no longer a polynomial function.

4 Trigonometric products

We study the zeta regularized products of trigonometric functions. In this section we estab-

lish a general theorem, and put examples and applications in the next section. For simplicity,

we take ϕ(z) = sinh z. Because of the differential equations

(ϕ′)2 − ϕ2 = 1,

ϕ′′ − ϕ = 0

satisfied by sinh z, the attached zeta function satisfies a difference-differential equation which

allows us to make our discussion clear.

Let a = {an}n∈I be a zero-free sequence for ϕ(z) = sinh z. Define the zeta function

ζ trig
a

(s, x) of {sinh(an − x)}n∈I by

ζ trig
a

(s, x) :=
∑
n∈I

sinh(an − x)−s.(4.1)

We assume that ζ trig
a

(s, x) is regularizable and holomorphic in the right half plane Re(s) > 0.

Denote by µ the depth of ζ trig
a

(s, x). Since sinh z is 2πi-periodic function, the function

Dtrig
a

(x) =
∐••∏n sinh(an − x) is also a 2πi-periodic function (but not entire function); we may

assume that an’s and x are lying in the strip S :=
{
z ∈ C

∣∣ −π ≤ Im z < π
}

.

The main purpose of this section is to show that the function Dtrig
a

(x) is a piecewise

holomorphic function, and has an analytic continuation D̃trig
a

(x) as an entire function whose

zeros are given by x = an + kπi (n ∈ I, k ∈ Z). More precisely, we prove the following

theorem.

Theorem 4.1. Let a = {an}n∈I be a zero-free sequence for sinh(z), and U a connected

domain in C. Denote by p the least non-negative integer such that the series
∑

n∈I a
−p−1
n

converges absolutely. Suppose that the zeta function ζ trig
a

(s, x) =
∑

n∈I sinh(an − x)−s is

regularizable for any x ∈ U . Put Dtrig
a

(x;U) :=
∐••∏n∈I sinh(an − x)

∣∣
U

for x ∈ U . Then

there exists a polynomial function fa(x;U) of x depending on a and U such that the analytic
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extension D̃trig
a

(x;U) = :
∐••∏n∈I sinh(an − x) :U of Dtrig

a
(x;U) is given by

D̃trig
a

(x;U) = :
∐
••

∏
n∈I

sinh(an − x) :U

= exp(fa(x;U))
∏
n∈I
k∈Z

(
1 − x

an + kπi

)
exp

(
p+1∑
m=1

1

m

(
x

an + kπi

)m
)

(4.2)

for x ∈ C. Especially, the zeros of the function :
∐••∏n∈I sinh(an − x) :U are exactly given by

x = an + kπi (n ∈ I, k ∈ Z).

Remark 4.1. When ζ trig
a

(s, x) is meromorphic at s = 0, this result is obtained in [KiKuSW1].

Proof of Theorem 4.1. We denote by ∆trig
a

(x) = ∆trig
a

(x;U) the right hand side of (4.2). In

order to prove the equality (4.2), it is enough to show that

∂Mx logDtrig
a

(x) = ∂Mx log ∆trig
a

(x)(4.3)

for some non-negative integer M � 1 (see [V]; see also [I], [KiKuSW1]). Since f
a(x;U) is a

polynomial function, one may suppress the symbol U in the discussion below. In fact, (4.3)

implies that logDtrig
a

(x) − log ∆trig
a

(x) is equal to a polynomial function of degree at most

M .

We first note that the right hand side ∂Mx log ∆trig
a

(x) of (4.3) is calculated by the same

discussion developed in [KiKuSW1] as follows:

Lemma 4.2. For a sufficiently large positive integer M , we have

∂Mx log ∆trig
a

(x) = −η
a
(M,x).

Here the function η
a
(s, x) is given by

η
a(s, x) := Γ(s)

∑
n∈I

∑
k∈Z

(an + kπi− x)−s,

which converges absolutely if Re(s) > p + 1.

By the definition of the function Dtrig
a

(x) it follows that logDtrig
a

(x) = −LT s=0 ζ
trig
a

(s, x).

In view of the lemma above, we should hence show the equality

∂Mx LT
s=0

ζ trig
a

(s, x) = η
a
(M,x)(4.4)

for some non-negative integer M � 1. Since the operations LT and ∂x commute, to show

the equation (4.3) it suffices to prove the following lemma.
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Lemma 4.3. We have

LT
s=0

∂2N
x ζ trig

a
(s, x) = η

a
(2N, x)(4.5)

for N ≥ max{µ+2, p+2}. Here µ denotes the depth of the attached zeta function ζ trig
a

(s, x),

and p the least non-negative integer such that the series
∑

n∈I |an|−p−1 converges.

Before proving Lemma 4.3, we perform some preliminary calculations which make the

discussion clear.

It is easy to see that

∂2
x sinh(a− x)−s = s2 sinh(a− x)−s + s(s + 1) sinh(a− x)−s−2.(4.6)

More generally, a successive use of the relation (4.6) leads the expression

∂2N
x sinh(a− x)−s =

N∑
j=0

νN,j(s) sinh(a− x)−s−2j ,(4.7)

where νN,j(s) is a polynomial in s of degree 2N . We note that νN,0(s) = s2N and νN,N (s) =

s(s + 1) · · · (s + 2N − 1). It follows then the

Proposition 4.4. The zeta function ζ trig
a

(s, x) satisfies the difference-differential equation

∂2N
x ζ trig

a
(s, x) = s2Nζ trig

a
(s, x) +

N∑
j=1

νN,j(s)ζ
trig
a

(s + 2j, x)(4.8)

for every N ≥ 1.

Proof of Lemma 4.3. We remark that the sum
∑N

j=1 νN,j(s)ζ
trig
a

(s + 2j, x) in (4.8) is mero-

morphic at the origin s = 0. Hence, if we take N so that 2N ≥ µ+ 2, then the meromorphic

part of s2Nζ trig
a

(s, x) has a zero of order 2 at s = 0. Thus we have

LT
s=0

∂2N
x ζ trig

a
(s, x) =

N∑
j=1

ν ′N,j(0)ζ trig
a

(2j, x).(4.9)

On the other hand, we notice that

ηa(2N, x) =
∑
k∈Z

∑
n∈I

(2N − 1)!

(an + kπi− x)2N
=

∑
n∈I

∂2N−2
x sinh(an − x)−2

=
∑
n∈I

N∑
j=1

νN−1,j−1(2) sinh(an − x)−2j =

N∑
j=1

νN−1,j−1(2)ζ trig
a

(2j, x)
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when 2N ≥ p + 2. Here we use the partial fraction expansion

sinh(x)−2 =
∑
k∈Z

1

(x− kπi)2

of sinh(x)−2. Therefore, in order to prove Lemma 4.3, it is enough to show the equality.

ν ′N,j(0) = νN−1,j−1(2) (j = 1, 2, . . . , N) .(4.10)

In fact, by using the difference-differential equation (4.6) it is elementary to check that

{ν ′N,j(0)}N,j and {νN−1,j−1(2)}N,j satisfy the same recurrence formula

cN,1 = 4N−1, cN,N = (2N − 1)!,

cN,j = 4j2cN−1,j − (2j − 1)(2j − 2)cN−1,j−1 (1 < j < N)

as double-indexed sequences with respect to N and j. Hence (4.10) follows. This completes

the proof of Lemma 4.3.

Thus the equality (4.3) follows. This proves Theorem 4.1.

Remark 4.2. From (4.6) we have the differential equation

−∂2
x logDtrig

a
(x) = LT

s=0
s2ζ trig

a
(s, x) +

∑
n∈I

sinh(an − x)−2(4.11)

of Dtrig
a

(x). Hence, in particular there exists a polynomial function f(x) such that the

function D̃trig
a

(x) is quasi-periodic, that is, the equality

D̃trig
a

(x + 2πi) = exp f(x)D̃trig
a

(x)

holds.

5 Examples and applications

5.1 q-products: Γq(x) and a variant of Kronecker’s limit formula

For q > 1, put τq := πi/ log q and

Sq :=
{
z ∈ C

∣∣ −π/ log q ≤ Im z < π/ log q
}
,

and call it the fundamental strip of 2τq. We also put 〈z〉q := log qz/ log q ∈ Sq. Notice that

〈z〉q is 2τq-periodic function and 〈z〉q = z if z ∈ Sq (see (1.5) for the convention of the log-

branch). When q = e, we suppress the symbol q and simply write as S and 〈z〉 respectively.
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Since there is a basic periodicity qx+2τq = qx, a function defined by a regularized product of

q-expressions has an obvious periodicity but is not meromorphic as we show in the following

examples.

Example 5.1. Let us consider the function
∐
•
∏∞

n=0 q
n+x. The attached zeta function is

ζ
a(s, x) =

∞∑
n=0

(qn+x)−s =
q−s〈x〉q

1 − q−s
=

1

s log q

∞∑
n=0

Bn(〈x〉q)
(−s log q)n

n!

where Bn(t) denotes the n-th Bernoulli polynomial. Thus we have

∞∐
•

∏
n=0

qn+x = q−B2(〈x〉q)/2
(
= qζ(−1;〈x〉q)

)
,

(where B2(x) = x2−x+ 1
6
) which is 2τq-periodic function but not meromorphic (discontinuous

on the boundary of the strip Sq). However, the ‘standard’ normal product (or analytic

extension)

D̃
a(x; q( · );Sq) = :

∞∐
•

∏
n=0

qn+x : = q−B2(x)/2

does not have the 2τq-periodicity.

Example 5.2. Let a = {n}∞n=0 be the sequence of non-negative integers. Look at the

function defined by

Da
(x; [ · ]q) :=

∞∐
•

∏
n=0

[n + x]q.

Here we denote by [a]q the q-analogue of the number a given by

[a]q :=
qa/2 − q−a/2

q1/2 − q−1/2
.

If Re(a) > 0, we have

[a]−sq = (q1/2 − q−1/2)sq−s〈a〉q(1 − q−a)−s.

Using the binomial expansion we have

Da(x; [ · ]q) =
[∞]q!

Γq(〈x〉q)
(5.1)

for Re(x) > 0 (see [KuW2]). Here Γq(x) denotes the Jackson q-gamma function defined by

Γq(x) :=

∏∞
n=1(1 − q−n)∏∞

n=0(1 − q−(n+x))
(q1/2 − q−1/2)1−xqx(x−1)/4,
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and the constant [∞]q! :=
∐
•
∏∞

n=0[n]q is essentially the Dedekind η-function given by

[∞]q! = (q1/2 − q−1/2)− log(1−q−1)/ log q × q−1/24
∞∏
n=1

(1 − q−n).

Because of the functional equation Γq(x + 1) = [x]qΓq(x), (5.1) is valid for all x ∈ C by

virtue of the property
∐
•
∏

n∈I an
∐
•
∏

n∈J an =
∐
•
∏

n∈I�J an (see (2.2)). The function Da(x; [ · ]q)
is holomorphic in each strip but is not an entire function. We also notice that an analytic

extension (the ‘standard’ normal product)

D̃a(x; [ · ]q;Sq) = :

∞∐
•

∏
n=0

[n + x]q : =
[∞]q!

Γq(x)

of D
a(x; [ · ]q) becomes entire, but the periodicity is not preserved; still Γq(x) has a quasi-

periodicity

Γq(x + 2τq) = (q1/2 − q−1/2)2τqqτqx+τ
2
q −1/2Γq(x).

As we have seen in Section 3, this kind of quasi-periodicity is inherited from the existence

of differential equations of exponential (and/or trigonometric) functions. See Remark 4.2.

We put Uk := Sq + 2kτq for k ∈ Z.

D
a
(x; [ · ]q;Uk) =

[∞]q!

Γq(x)
Fq(x;Uk) (x ∈ Uk)

where

Fq(x;Uk) := (q1/2 − q−1/2)−2kτqqkτqx−kτq(kτq+1/2) (k ∈ Z)

Thus, two entire functions D̃
a
(x; [ · ]q;Uk) and D̃

a
(x; [ · ]q;Um) coincide up to the factor

Fq(x; k)Fq(x;m)−1.

Example 5.3. A q-analogue Sq
Z
(x) := :

∐
•
∏

n∈Z[n− x]q : of the ring sine function SZ(x) sub-

stantially gives the elliptic theta function ϑ(x) = ϑ(x; log q
2πi

). Actually, we have

Sq
Z
(x) = (a constant) × [∞]q!

2

Γq(x)Γq(1 − x)
.

This is a variant of Kronecker’s limit formula. In fact, Sq
Z
(x/τ) is essentially equal to SZ[τ ](x)

in Example 3.3 (see [KiKuSW1, Remark 4.4]). See also Remark 5.4 for a comparison of

|Sq
Z
(x)| with

∐
•
∏

n∈Z |[n− x]q|.
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5.2 Products over the essential zeros of ζ(s) and the RH

The higher Riemann zeta function ζl∞(s) (l = 1, 2, . . . ) is defined by

ζl∞(s) :=
∞∏
n=0

ζ(s+ ln).

This ζl∞(s) is analytically continued to the whole plane as a meromorphic function. As

the Riemann zeta function ζ(s) possesses a functional equation, the higher Riemann zeta

function ζl∞(s) also has a functional equation between s and 1 − s − l [KuMW]. If one

hopes to write this functional equation in a symmetric form, then, beside the gamma factor

described by Γ(s) and the double gamma function Γ2(s) (see (6.1) for the definition), it is

necessary to introduce the function Sα(x) of the form

Sα(x) :=
∐
�
∏

Im ρ>0

sinα(ρ− x) (α > 0)

where
∐
�
∏

denotes a regularized product in a suitable sense and ρ runs through the essential

zeros of ζ(s) with positive imaginary part. The initial purpose of this subsection is to show

that the function Sα(x) exists if we take
∐
�
∏

=
∐••∏. In fact, we find a certain expression of

Sα(x) by a usual infinite product of the factors 1 − e2αiρx. Consequently, we may construct

the function Gl∞(s) explicitly in terms of Γ(s), Γ2(s) and Sπ/l(s) so that the completion

ζ̂l∞(s) := Gl∞(s)ζl∞(s) of ζl∞(s) satisfies the symmetric functional equation

ζ̂l∞(s)ζ̂l∞(1 − s− l) = 1.

Moreover, using the ddotted product representation of Sα(x), as an application we establish

a certain statement which is equivalent to the validity of some distribution formula of the

essential zeros of ζ(s) in Theorem 5.4; This is regarded as a weaker version of Riemann

Hypothesis of ζ(s).

Recall first the Cramér’s result [Cr]. Let us consider the following partition functions

V (w) :=
∑

Im ρ>0

eρw (Im(w) > 0) ,

Φ(t) :=
∑

Re τ>0

e−τt (Re(t) > 0) .

Here the summation
∑

Re τ>0 is taken over all essential zeros ρ of ζ(s) such that Re(τ) > 0

where τ = τ(ρ) is defined by ρ = 1/2 + iτ . It is easy to see that V (it) = eit/2Φ(t) for

Re(t) > 0. It is proved in [Cr] that the function

V (w) − 1

2πi

(
logw

1 − e−w
+
γ + log 2π − πi/2

w

)
(5.2)
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is analytically continued to the whole w-plane as a single-valued function, and is holomorphic

near the origin w = 0. Here γ denotes the Euler constant. More precisely, we have the

Lemma 5.1. For any α > 0, the meromorphic part ϕmero
α (s) of Φ(αs) is given by

ϕmero
α (s) = λ−1(α)s−1 + λ0(α) + λ1(α)s+ O(s2)

where the coefficients λ−1 and λ0 are explicitly given as follows:

λ−1(α) = −γ + log 2πα

2πα
, λ0(α) =

7

8
.

Using this lemma we remark first the following simple example of the ddotted product.

Example 5.4. The ddotted regularized product

∐
••

∏
Im ρ>0

ei(x−ρ) = exp

(
1

2

(
x− 1

2

)2
γ + log 2π

2π
− 7i

8
x + C

)

is obtained from the differential equation ∂xT (s, x) = −isT (s, x) of the attached zeta function

T (s, x) :=
∑

Im ρ>0

e−is(x−ρ) = e(1/2−x)isΦ(s).

Here C is some constant.

To study the function Sα(x), let us calculate the attached zeta function

Lα(s, x) :=
∑

Im ρ>0

sinα(ρ− x)−s

for observing the existence of the function Sα(x). Suppose that Imx ≤ 0. Using the binomial

theorem we see that

Lα(s, x) =
∑

Im ρ>0

(
eiα(ρ−x) − e−iα(ρ−x)

2i

)−s

= (−2i)s
∑

Im ρ>0

eiαs(ρ−x)(1 − e2iα(ρ−x))−s

= efα(x)s
∑

Im ρ>0

eiαsρ
∞∑
n=0

(
−s
n

)
(−1)ne2niα(ρ−x)

= efα(x)s

{
V (iαs) +

∞∑
n=1

(−1)n
(
−s
n

)
V (iα(s + 2n))e−2niαx

}
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where we put fα(x) := −iαx + log(−2i). Since the function V (iα(s + 2n)) is holomorphic

at s = 0, we obtain

(−1)n
(
−s
n

)
e−2niαxV (iα(s + 2n)) =

V (2iαn)

n
e−2niαxs + O(s2)

around s = 0. Therefore we have

Lα(s, x) = efα(x)s
{
eiαs/2Φ(αs) + sPα(x) + O(s2)

}
.(5.3)

Here we put

Pα(x) :=

∞∑
n=1

V (2αn)

n
e−2niαx.

This shows that Lα(s, x) is regularizable by (5.2). Moreover, the linear term of Lα(s, x) is

given by

LT
s=0

Lα(s, x) = LT
s=0

{
es(fα(x)+iα/2)Φ(αs)

}
+ Pα(x)

= Fα(x) + Pα(x).
(5.4)

Here Fα(x) is a quadratic polynomial Fα(x) = Aαx
2 + Bαx + Cα, where the coefficients Aα

and Bα are explicitly given by

Aα =
α(γ + log 2πα)

4π
, Bα = −iα

(
γ + log 2πα

2π

(
log(−2i)

α
+
i

2

)
− 7

8

)
.

Consequently, we obtain the following infinite product expression of Sα(x).

Theorem 5.2. The function Sα(x) := :
∐••∏Im ρ>0 sinα(ρ− x) : exists. Here the initial do-

main of this normal product is taken as
{
x ∈ C

∣∣ 0 ≤ Re x < 2π/α
}
. It also has the product

expression

Sα(x) = e−Fα(x)
∏

Im ρ>0

(sinα(ρ− x)) eiα(ρ−x)+log(−2i)

= e−Fα(x)(e−2αix; e−2αi)ζ.

(5.5)

Here we put

(x; q)ζ :=
∏

Im ρ>0

(1 − xq−ρ).

Proof. Since two functions Sα(x) and (e−2αix; e−2αi)ζ have the same zeros and are of order 2,

they coincide up to a quadratic factor, that is, there exists a certain quadratic polynomial



20 K. Kimoto and M. Wakayama

gα(x) such that Sα(x) = egα(x)(e−2αix; e−2αi)ζ. By taking the logarithm in the initial domain

we observe that

− log Sα(x) = LT
s=0

Lα(s, x) = Fα(x) + Pα(x) = −gα(x) − log(e−2αix; e−2αi)ζ .

When x tends to −i∞ along the imaginary axis, the functions Pα(x) and − log(e−2αix; e−2αi)ζ

vanish. Therefore, two functions −Fα(x) and gα(x) must coincide since they are polynomial

functions. This completes the proof.

We notice that the function Φ(t) is real-valued if t is real. Actually, the function Φ(t)

has the expression

Φ(t) = 2
∑

Re τ>0
Im τ>0

e−tRe τ cos (t Im τ) +
∑
τ∈R
τ>0

e−tτ .(5.6)

If we introduce the functions

ΦR(t) :=
∑

Re τ>0

e−tRe τ ,

Ψ(t) :=
∑

Re τ>0
Im τ>0

e−tRe τ (Im τ)2
{

sin(t Im τ/2)

t Im τ/2

}2

,

then the functions Φ(t), ΦR(t) and Ψ(t) satisfies the following relations.

Lemma 5.3. For sufficiently small t > 0, we have

0 ≤ ΦR(t) − Φ(t) = t2Ψ(t) ≤ t2/8

1 − t2/8
Φ(t).(5.7)

Proof. Remark that | Im τ | < 1/2 since ρ = 1/2 + iτ lies in the critical strip 0 < Re(ρ) < 1.

Then we have

ΦR(t) − Φ(t) = 2
∑

Re τ>0
Im τ>0

e−tRe τ (1 − cos(t Im τ))

= 4
∑

Re τ>0
Im τ>0

e−tRe τ sin2(t Im τ/2)

= t2
∑

Re τ>0
Im τ>0

e−tRe τ (Im τ)2
{

sin(t Im τ/2)

t Im τ/2

}2 (
= t2Ψ(t)

)

≤ t2

4

∑
Re τ>0
Im τ>0

e−tRe τ ≤ t2

8
ΦR(t),

from which the desired inequalities are immediately obtained.
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Theorem 5.4. Define a quadratic polynomial Rα(u) by

Rα(u) := −γ + log 2πα

4πα

{
α

(
u− 1

2

)
+
π

2

}2

.

Suppose that the regularized product
∐••∏Im ρ>0 |sinα(ρ− x)| exists. Then, the following two

conditions are equivalent.

(i) The equality

∐
••

∏
Im ρ>0

∣∣sinα(ρ− x)
∣∣ = e−Rα(Re(x))

∣∣∣∣∣ ∐
••

∏
Im ρ>0

sinα(ρ− x)

∣∣∣∣∣ (Imx ≤ 0)(5.8)

holds for two distinct values of α > 0.

(ii) An asymptotic formula
∑

Im ρ>0(Re ρ− 1/2)2e−t Im ρ = O(log t) holds as t → 0.

Proof. Denote by L̃α(s, x) the attached zeta function

L̃α(s, x) :=
∑

Im ρ>0

∣∣sinα(ρ− x)
∣∣−s

of the regularized product
∐•
•
∏

Im ρ>0 |sinα(ρ− x)|. First we see that

L̃α(s, x) = esf̃α(x)
∑

Im ρ>0

e−sα Im(ρ)
∣∣1 − e2iα(ρ−x)

∣∣−s
where we put f̃α(x) := α Im(x) + log 2 = Re fα(x). Since∣∣1 − e2iα(ρ−x)

∣∣−s =
(
1 − e2iα(ρ−x)

)−s/2 (
1 − e−2iα(ρ̄−x̄))−s/2

=

∞∑
m=0

∞∑
n=0

(
−s/2

m

)(
−s/2

n

)
(−1)me2miα(ρ−x)(−1)ne−2niα(ρ̄−x̄)

= 1 +
s

2

∞∑
m=1

1

m
e2miα(ρ−x) +

s

2

∞∑
n=1

1

n
e−2niα(ρ̄−x̄) + O(s2),

we have ∑
Im ρ>0

e−sα Im(ρ)
∣∣1 − e2iα(ρ−x)

∣∣−s
=

∑
Im ρ>0

e−sα Im ρ +
s

2

∞∑
m=1

e−2miαx

m

∑
Im ρ>0

e2miαρ +
s

2

∞∑
n=1

e2niαx̄

n

∑
Im ρ>0

e−2niαρ̄ + O(s2)

= ΦR(sα) + sRePα(x) + O(s2).

(5.9)
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Hence we have

L̃α(s, x) = esf̃α(x)
(
ΦR(sα) + sRePα(x) + O(s2)

)
.(5.10)

Assume that the regularized product
∐••∏Im ρ>0 |sinα(ρ− x)| exists. Then the function Ψ(t) is

written in the form Ψ(t) = P (t)+
∑m

j=1Qj(t)(log t)m for some meromorphic functions Qj(t).

Thanks to the inequality (5.7), it is elementary to check that m = 1, that is, Ψ(t) is in the

form

Ψ(t) = P (t) + Q(t) log t(5.11)

and P (t), Q(t) have at most simple poles at t = 0.

By (5.3) and (5.10) we have

LT
s=0

L̃α(s, x) − ReLT
s=0

Lα(s, x)

=LT
s=0

{
esf̃α(x)Φ(sα)

}
− ReLT

s=0

{
es(fα(x)+iα/2)Φ(sα)

}
+ LT

s=0
esf̃α(x)

{
ΦR(sα) − Φ(sα)

}
=Rα(Re(x)) + α2 LT

s=0
s2esf̃α(x)Ψ(sα)

Hence the validity of (5.8) is equivalent to the condition LT s=0 s
2esf̃α(x)Ψ(sα) = 0. Since

P (sα) and Q(sα) have at most simple poles at s = 0, we see that

LT
s=0

s2esf̃α(x)Ψ(sα)

=LT
s=0

(
s2(1 + sf̃α(x) + s2f̃α(x)2 + · · · )(P (sα) + Q(sα) logα + Q(sα) log s)

)
= Res

s=0
P (sα) + logαRes

s=0
Q(sα).

By taking two distinct values of α, this implies that LT s=0 s
2esf̃α(x)Ψ(sα) = 0 if and only if

Ress=0 P (s) = Ress=0Q(s) = 0. which is also equivalent to the estimation Ψ(t) = O(log t)

as t → 0 in view of (5.11). If we recall the asymptotics Ψ(t) ∼
∑

Re τ>0(Im τ)2e−Re τt, which

is immediate from the definition of Ψ(t), the assertion of the theorem is now clear.

Remark 5.1. It is interesting to study the convergence of the series∑
Re τ>0

(Re τ)x(Im τ)2 (x ≥ 0) .

We note that if the series above converges for every x > 0, then the existence of the regu-

larized product
∐••∏ρ | sinα(ρ− x)| follows.
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Remark 5.2. In view of Theorem 5.2, it would be very interesting to examine if the ddotted

product
∐••∏ρ | sinα(ρ− x)| possesses an infinite product expression such as :

∐••∏ρ sinα(ρ− x) :

has. See (5.5).

Remark 5.3. We can extend the definition of regularized products as follows: Suppose that

the attached zeta function ζ
a(s) of a given sequence a = {an}n is analytically continued

to the domain Re(s) > 0. Denote by ϕ(s) the meromorphic part of ζ
a(s). Namely, there

exist a finite number of functions βj(s), fj(s) such that βj(s) is not meromorphic (has a

log singularity or a branch point) at s = 0, fj(s) is meromorphic at s = 0 and satisfies

ζa(s) = ϕ(s) +
∑

j βj(s)fj(s). Then we define

∐
••

∏
n

an := exp

(
−Res

s=0

ϕ(s)

s2

)
.

It can be proved that a function defined by this regularized product also has the Wierstrass

canonical form as in Theorems 3.1 and 4.1. If we adopt this definition, then the condition

corresponding to (ii) in the theorem above varies in delicate way.

Remark 5.4. The analogous formulas of (5.5) hold for the q-gamma function Γq(x) and the

q-analogue of the ring sine function Sq
Z
(x) defined in Example 5.3. In fact, we have

∐
•

∏
n≥0

∣∣[n− x]q
∣∣ = q(x−x̄)

2/16 ×
∣∣∣∣∣∐•∏
n≥0

[n− x]q

∣∣∣∣∣ ,(5.12)

∐
•

∏
n∈Z

∣∣[n− x]q
∣∣ = e−π

2/ log qq(x−x̄)
2/8

∣∣∣∣∣∐•∏
n∈Z

[n− x]q

∣∣∣∣∣ .(5.13)

We note that the left hand sides in these formulas are also directly calculated by definition in

contrast with
∐••∏Im ρ>0 | sinh(ρ−x)|. We remark further that the exponential factors appearing

in (5.12) and (5.13) is a kind of an anomaly in view of (2.5) (see Remark 2.2). It would be

also interesting to give an interpretation of these exponential factors in a geometric way, for

instance, by some intersection numbers.

Remark 5.5. It is hard to establish a criterion similar to the one in Theorem 5.4 about

the relation between the half zeta function ζ+(s) :=
∐
•
∏

Im ρ>0(ρ − x) (see [HKuW]) and∐
•
∏

Im ρ>0 |ρ− x|.
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5.3 Products over the eigenvalues of the Laplacian ∆Γ

A similar situation occurs when we study the symmetric functional equation of the higher

Selberg zeta function. We recall the Selberg zeta function ZΓ(s) defined by

ZΓ(s) :=

∞∏
m=1

∏
P∈Prim(Γ)

(1 −N(P )−s−m) (Re(s) > 1)

for a (uniform or non-uniform) lattice Γ in PSL(2,R). Here Prim(Γ) denotes the set of

primitive hyperbolic conjugacy classes of Γ, and N(P ) := max{|αP |2, |βP |2} is the norm of

P where αP and βP are the eigenvalues of a representative matrix of P . The higher Selberg

zeta function zΓ(s) of Γ is also defined by

zΓ(s) :=
∞∏
m=1

∏
P∈Prim(Γ)

(1 −N(P )−s−m)−m =
∞∏
n=1

ZΓ(s + n)−1.

Both zΓ(s) and ZΓ(s) are meromorphic in the entire plane [KuW3]. Related to the study of

the symmetric functional equation of zΓ(s), it is useful to introduce the function of the form

“ ∐
�
∏
n≥0

cosh(rn − x)
”

where rn is a normalized eigenvalues of the Laplacian ∆Γ on L2(Γ\H), that is, the discrete

spectrum of ∆Γ is given by Spec ∆Γ = {λn = 1/4 + r2n}n≥0 (0 = λ0 ≤ λ1 ≤ . . . ). Here

the eigenvalue λ0 = 1/4 + r20 = 0 (i.e. r0 = −i/2) corresponds to the space of constant

functions on Γ\H . We take rn such as Re(rn) > 0. When Γ is a uniform lattice (i.e. Γ is co-

compact), the dotted product
∐
•
∏

n≥0 cosh(rn − x) exists (see [KuW3]). If we take Γ = Γi(N)

a congruence subgroup of PSL(2,R) (which is non-uniform), it is shown that the situation is

the same as that of Cramér’s V (w) above and we actually need the ddotted product. Define

the theta function

ΘΓ(t) :=

∞∑
n=0

e−trn . (t > 0)

Then, there exists some constant C such that the function ΘΓ(t) − C log t is analytically

continued to the whole t-plane by virtue of a Cartier-Voros type trace formula for Γ (see

[CaV], [H2]). Thus, by the same discussion as in the proof of Theorem 5.2, we have the

Theorem 5.5. For a congruence subgroup Γ of PSL(2,R), the ddotted regularized product∐••∏n≥0 cosh(rn − x) exists and can be extended as an entire function. Indeed, there exists a
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polynomial fΓ(x) of degree 3 such that

det cosh

(√
∆Γ − 1

4
− x

)
:= :

∐
••

∏
n≥0

cosh(rn − x) : = efΓ(x)
∏
n≥0

(1 + e−2(rn−x)).

Here the initial domain of this normal product is taken as
{
z ∈ C

∣∣ 0 ≤ Im x < 2π
}
.

Remark 5.6. When Γ is co-compact, it is known in [KuW3] that the polynomial fΓ(x) can

be written as

fΓ(x) = − 1

3π2
(g − 1)(iπx+ log 2)3 +

1

12
(g − 1)(iπx + log 2) − b1

for some constant b1. Here g denotes the genus of the Riemann surface Γ\H .

Remark 5.7. Let Γ be a congruence subgroup of PSL(2,R). It is shown in [H1] that the

function ΘΓ(t) is given by the form

ΘΓ(t) = QΓ(t) log t +
AΓ

t
+ BΓ + CΓt + O(t2).

Here the coefficients are given explicitly. We note that if we put RΓ
α(x) = AΓα Im(x)2, then

the identity

∐
••

∏
n≥0

∣∣coshα(rn − x)
∣∣ = e−R

Γ
α(x)

∣∣∣∣∣∐••∏
n≥0

coshα(rn − x)

∣∣∣∣∣(5.14)

holds for some α > 0 if and only if Γ satisfies Selberg’s 1/4-conjecture for the first eigenvalue

of the Laplacian ∆Γ (see, e.g. [S]) which implies that there is no exceptional zeros (i.e.

λ1 = 1/4 + r21 ≥ 1/4 for n ≥ 1) of the Selberg zeta function ZΓ(s). This is proved by the

same way in Theorem 5.4. Since it is known that the Selberg zeta function ZΓ(s) for the

modular group Γ = SL(2,Z), for instance, satisfies an analogue of the Riemann Hypothesis

(i.e. satisfies the Selberg’s 1/4-conjecture), we have the identity (5.14).

5.4 Necessary regularization

For a given function ϕ, we look at the following three kinds of regularized products.∐
�
∏
ρ

(ρ− x),(Linear)

∐
�
∏

Im ρ>0

(ρ− x),(Half)

∐
�
∏

Im ρ>0

sinh(ρ− x).(Trigonometric)
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Here the product symbol
∐
�
∏

indicates a suitable regularized product, and ρ runs through

the (normalized) non-trivial zeros of either the Selberg zeta functions ZΓ(s) for a uniform

lattice, ZΓ(s) for a non-uniform lattice or the Riemann zeta function ζ(s). Table 1 shows

the necessary regularization for these three products (see also Examples 6.2 and 6.3).

compact ZΓ(s) noncompact ZΓ(s) ζ(s)

Linear
∐∏ ∐∏ ∐∏

Half
∐∏ ∐

•
∏ ∐

•
∏

Trigonometric
∐
•
∏ ∐••∏ ∐••∏

Table 1: Necessary regularization

6 Concluding remarks

As final remarks, we describe the hierarchy of regularizations first, some experimental obser-

vation concerning the theta functions, Jacobi forms second, and about the zeta extensions

related to the aforementioned examples in Section 5.

6.1 Hierarchy of regularizations

Table 2 summarizes the resulting functions of regularized products of the form∐
�
∏
n∈L

ϕ(n− x)

where L is a semi-lattice or lattice, ϕ(z) is one of the functions z, sinh z, θ(z).

In Table 2, Γn(x) is the Barnes multiple gamma function (see, e.g. [B], [KuKo]) defined

by

1

Γn(x)
:=

∐∏
k1,...,kn≥0

(k1 + · · · + kn + x),(6.1)

and Oq(x;n) is the Appel O-function of rank n (see, e.g. [KuW2]) defined by

Oq(x;n) :=
∏

k1,...,kn≥0

(
1 − q−(k1+···+kn+x)

)
.
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Rational
∐∏

Trigonometric
∐
•
∏

Elliptic
∐
�
∏

Z≥0 Γ(x) Γq(x) ?1

Z sinx ϑ(x; τ) “ϑ(x; τ)”

Z⊕n
≥0 Γn(x) Oq(x;n) ?1

Z⊕2 ϑ(x) ?2 ?2

Table 2: Knight moving table

For the theta function “ϑ(x; τ)” appearing in the elliptic column of Table 2, see Section 6.2.

We have not succeeded in obtaining regularized products corresponding to ?1 and ?2 in

Table 2 yet. The difficulty in ?1 is lied in the analysis of the behavior of the attached zeta

function at the origin s = 0. In the case of ?2, even the attached zeta function does not exist

in the present sense. Thus, for example, the ring sine function of the integer ring of a real

quadratic field cannot be defined via the regularized product.

We hope that there exist a transitive relation such as∐
�
∏
m∈I

∐
�
∏
n∈J

f(x;m,n) =
∐
�
∏
m∈I
n∈J

f(x;m,n).

From this viewpoint we may expect the presence of a hierarchy∐
�
∏
n≥0

Γk(n + x) = Γk+1(x)

among the multiple gamma functions under a suitable formulation of zeta regularized prod-

ucts. Related to this expectation, see Example 6.1 in Section 6.3.

6.2 Towards the elliptic products

6.2.1 Elliptic theta function ϑ(x, t)

We present here an experimental study towards a possibility to defining a regularized product

of the elliptic theta functions

Θ(x, t) =
∐
�
∏
k∈Z

ϑ(x + kt, t).(6.2)
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We are interested in what kind of a new regularization we should employ for
∐
�
∏

in (6.2).

Recall the theta function ϑ(x, t) is defined by

ϑ(x, t) :=
∑
n∈Z

exp(−n2t− 2nx)
(

= ϑ3(ix/π, it/π)
)

for x ∈ C and Re(t) > 0. We notice that the function ϑ(x, t) satisfies the following formulas.

ϑ(x + iπ, t) = ϑ(x, t),(6.3)

ϑ(x + t, t) = exp(t+ 2x)ϑ(x, t),(6.4)

ϑ(x, t) =

√
π

t
exp(x2/t)ϑ(−iπx/t, π2/t).(6.5)

For simplicity we assume that x ∈ R and t > 0. The attached zeta function L(s; x, t) of

the regularized product (6.2) (if it exists) is given by

L(s; x, t) =
∑
k∈Z

ϑ(x + kt, t)−s =
∑
k∈Z

{
exp(k2t + 2kx)ϑ(x, t)

}−s

= ϑ(x, t)−s
∑
k∈Z

exp(−k2st− 2ksx)

= ϑ(x, t)−sϑ(sx, st)

for Re(s) > 0. In order to see the behavior of L(s; x, t) near the origin s = 0, we apply the

theta inversion formula (6.5) and get

L(s; x, t) = ϑ(x, t)−s
√

π

st
exp(sx2/t)ϑ(−iπx/t, π2/st).

We observe the contribution of the factor ϑ(−iπx/t, π2/st). By definition ϑ(−iπx/t, π2/st)

is written as

ϑ(−iπx/t, π2/st) =
∑
k∈Z

exp(−π2k2/st− 2πixk/t)

= 1 +
∑
k �=0

exp(−π2k2/st− 2πixk/t)

= 1 + ε(s),

where ε(s) denotes an analytic function in Re(s) > 0 which has exponential decay at s = 0;

s−Nε(s) → 0 as s → 0 in Re(s) > 0 for any N ≥ 1.

Combining the calculations above, we see that the behavior of the attached zeta function

L(s; x, t) of (6.2) is described as

L(s; x, t) =

√
π

st
(1 − s log ϑ(x, t) + O(s2))(1 + sx2/t + O(s2))(1 + ε(s))

=

√
π

st
(1 − s(log ϑ(x, t) − x2/t) + O(s2)) + ε(s) (s → 0, Re(s) > 0) .
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Now we bring up a variant of the zeta regularized products motivated by this observation.

This is considered to be a generalization of the dotted product
∐
•
∏

(see also Remark 6.1).

Definition 6.1. Let ψ(s) be a holomorphic function satisfying ψ(0) = 0. The attached zeta

function ζa(s) of a sequence a = {an}n∈I is called asymptotically ψ-regularizable if there

exists a function Za(s) such that Z
a
(s)−ζ

a
(ψ(s)) = ε(s) as s → 0 in Re(s) > 0 and Z

a
(s) is

meromorphic at s = 0. We call the function Z
a
(s) the asymptotically ψ-modified zeta

function of a. Then, the asymptotically ψ-regularized product of a is defined by

ψ∐
•

∏
n∈I

an := exp

(
−Res

s=0

Za(s)

s2

)
.(6.6)

Notice that this is nothing but the dotted product
∐
•
∏

n∈I an when ζ
a
(s) is meromorphic at

s = 0 and ψ(s) = s.

If we take ψ(s) = s2, then the function L(ψ(s); x, t) is asymptotically ψ-regularizable.

Actually, the Laurent expansion of the asymptotically ψ-modified zeta function L̂(s; x, t) of

L(s; x, t) at s = 0 is given by

L̂(s; x, t) =

√
π

t

(
1

s
− s(log ϑ(x, t) − x2/t) + O(s3)

)
.

Hence we have

Res
s=0

L̂(s; x, t)

s2
= −

√
π

t
(log ϑ(x, t) − x2/t).

Therefore, if we employ the asymptotically ψ-regularized product, then the product (6.2) is

given by

Θ(x, t) =
ψ∐

•
∏
k∈Z

ϑ(x + kt, t) = (exp(−x2/t)ϑ(x, t))
√
π/t.(6.7)

In contrast to the translation formulas (6.3) and (6.4) of the theta function ϑ(x, t),

the directions of periodicity and quasi-periodicity of Θ(x, t) are switched by taking this

regularized product ψ
∐
•
∏

along the lattice tZ. The function Θ(x, t) possesses the periodicity

Θ(x + t, t) = Θ(x, t) of the ‘lattice direction’ as is expected, while Θ(x, t) is quasi-periodic

with respect to the period iπ as an entire function (see Section 2.2).

A similar analysis shows the

Theorem 6.1. Let ϕ(x, τ) be a Jacobi form of weight k and index m (see, e.g. [EZ] for the

definition). Then we have

Φ(x, τ) =
ψ∐

•
∏
l∈Z

ϕ(x + lτ, τ) =
(
exp(2πimx2/τ)ϕ(x, τ)

)√i/2mτ
(6.8)

for x ∈ iR and τ ∈ iR>0 =
{
it ∈ C

∣∣ t > 0
}
.
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Proof. Let ϕ(x, τ) be a Jacobi form of weight k and index m. Notice that the function

ϕ(x, τ) satisfies the translation formula

ϕ(x + lτ, τ) = exp(−2mτπil2 − 4mxπil)ϕ(x, τ) (k ∈ Z) .(6.9)

It follows that the attached Dirichlet series of (6.8) is calculated as∑
l∈Z

ϕ(x + lτ, τ)−s = ϕ(x, τ)−s
∑
l∈Z

exp(2msτπil2 + 4msxπil)

= ϕ(x, τ)−sϑ3(2smx, 2smτ)

= ϕ(x, τ)−s
√

i

2smτ
exp

(
−2πismx2

τ

)
ϑ3(x/τ,−1/2smτ)

= ϕ(x, τ)−s
√

i

2smτ
exp

(
−2πismx2

τ

)
+ ε(s).

(6.10)

Therefore, the Laurent expansion of the asymptotically ψ-modified zeta function for ψ(s) =

s2 around s = 0 is given by

ϕ(x, τ)−s
2

√
i

2mτ
exp

(
−2πis2mx2

τ

)
s−1

=

√
i

2mτ

{
1

s
−

(
logϕ(x, τ) +

2πimx2

τ

)
s

}
+ O(s2).

This implies that log Φ(x, τ) =
√

i
2mτ

(
logϕ(x, τ) + 2πimx2

τ

)
.

Remark 6.1. Since the function 1/
√
s is also rewritten as the series

1√
s

= 1 +
∞∑
n=1

2−n

n!
(log s)n,

the asymptotically ψ-modified zeta function L̂(s; x, t) of the product (6.2) is also expressed

in the form

L̂(s; x, t) =
{

1 − s(log ϑ(x, t) − x2/t) + O(s2)
}

︸ ︷︷ ︸
‘meromorphic part’

+
∞∑
n=1

Qn(s; x, t)(log s)n(6.11)

for some meromorphic functions Qn(s; x, t) (this reminds us the ddotted product
∐••∏). Though

the (single-valued) meromorphic part in (6.11) is uniquely determined in the present case,

it is not true in general. Actually, look at the formula
∑∞

n=1
1
n!

(log s)n = s− 1 for instance.
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6.2.2 Weierstrass ℘-function

This section gives rather experimental remarks on zeta regularized products of the elliptic

functions. Let ℘(z) = ℘(z;ω1, ω2) be the Weierstrass ℘-function

℘(z) :=
1

z2
+

∑
ω∈Zω1+Zω2

ω �=0

{
1

(z − ω)2
− 1

ω2

}
.

We want to treat a product
∐
�
∏

n∈I ℘(anx) for a given sequence {an}n∈I which converges 0,

the pole of ℘(x). Here we suppose that x lies in a certain compact set. Notice that {anx}n∈I
also converges to 0. Define two Dirichlet series

ζell
a

(s, x) :=
∑
n∈I

℘(anx)−s,

ξell
a

(s, x) :=
∑
n∈I

a2n℘(anx)−s.

Recall the differential equation

℘′(z)2 = 4℘(z)3 − g2℘(z) − g3,

℘′′(z) = 6℘(z)2 − 1

2
g2,

when g2 = 60
∑

ω �=0 ω
−4, g3 = 140

∑
ω �=0 ω

−6. This yields the following assertion.

Lemma 6.2. The Dirichlet series ζe
a
(s, x) and ξe

a
(s, x) satisfy the relation

∂2
xζ

ell
a

(s, x) =2s(2s− 1)ξell
a

(s− 1, x)

+
g2s(2s + 3)

2
ξell
a

(s + 1, x) − g3s(s + 1)ξell
a

(s + 2, x).
(6.12)

Since

a2℘(ax)−s+1 − x−2℘(ax)−s = a2℘(ax)−s
∑
ω �=0

{
1

(ax− ω)2
− 1

ω2

}
by the definition of ℘(z), we have the following.

Lemma 6.3. We have

ξell
a

(s− 1, x) − x−2ζell
a

(s, x) =
∑
n∈I

a2n℘(anx)−s
∑
ω �=0

{
1

(anx− ω)2
− 1

ω2

}
.

In particular, for an appropriate choice of the sequence a, the function ξell
a

(s − 1, x) −
x−2ζell

a
(s, x) is holomorphic at s = 0.
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Corollary 6.4. The function (x2∂2
x − 2s(s − 1))ζell

a
(s, x) is holomorphic and has a zero at

s = 0.

Analogous to the differential equation (4.11) of the function Dtrig
a

(x), we see that the

function Dell
a

(x) :=
∐••∏n ℘(anx) has a similar relation as follows:

Proposition 6.5. If Dell
a

(x) :=
∐••∏n ℘(anx) exists, then the function Dell

a
(x) satisfies

−x2∂2
x logDell

a
(x) = 4p1(x) + 2p0(x) + κ(x)(6.13)

where κ(x) is given by

κ(x) := x2
∑
n∈I

a2n

{
−2

∑
ω �=0

(
1

(anx− ω)2
− 1

ω2

)
+

3g2
2
℘(anx)−1 − g3℘(anx)−2

}
,

and the functions {pk(x)}k≥−µ are determined by the relations

x2p′′k(x) − 4pk−2(x) + 2pk−1(x) = 0 (k ≤ 0) ,

pk ≡ 0 (k < −µ) .

Here µ denotes the depth of ζell
a

(s, x).

6.3 Zeta extensions

Let f(x) be a zeta-like function. A function F (x) is said to be a zeta extension of f(x)

if F (x) satisfies a translation formula F (x + 1) = f(x)−1F (x) [KuW1]. For instance, the

higher Riemann zeta function ζ1∞(s) is a zeta extension of ζ(s) ; ζ1∞(s+ 1) = ζ(s)−1ζ1∞(s).

The zeta regularization method is effective in constructing a zeta extension from a given

zeta function. Let us show several examples. Calculations are based on the property (2.2)

in Proposition 2.1. We may consider the gamma function is a sort of a zeta function in the

adelic sense. Thus we recall first the multiple gamma functions [B] (see also [KuKo]).

Example 6.1. A typical example is the multiple gamma functions Γm(x) which are forming

an ascending series of zeta extensions. In fact, the function Γm+1(x) is a zeta extension of

Γm(x) :

Γm+1(x) =
∐∏

k1,...,km+1≥0

(k1 + · · · + km+1 + x)

=
∐∏

k1,...,km≥0

(k1 + · · · + km + x) ×
∐∏

k1,...,km≥0
km+1≥1

(k1 + · · · + km+1 + x)

= Γm(x)Γm+1(x + 1).
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Namely we have Γm+1(x + 1) = Γm(x)−1Γm+1(x). We note that the multiple sine functions

Sm(x) := Γm(x)Γm(m−x)(−1)m have the same structure, that is, Sm+1(x) is a zeta extension

of Sm(x). Note that S3(x)2 S2(x)−3 S1(x) appears in the gamma factor of the higher Selberg

zeta function zΓ(s) [KuW3].

Example 6.2. We define the function ζ+∞(s), which we call a higher half Riemann zeta

function, by

ζ+∞(s) :=
∐
•

∏
Im(ρ)>0
m≥0

(ρ + im− s).

This product exists and the function ζ+∞(s) satisfies the functional equation

ζ+∞(s) = ζ+(s)ζ+∞(s− i),

where ζ+(s) denotes the half Riemann zeta function introduced in [HKuW]. The existence

of the function ζ+∞(s) is shown as follows. The attached zeta function is essentially given by

H(w, z) :=
∑

Re(τ)>0
m≥0

(τ + m− z)−w.

This function H(w, z) is also expressed as a Mellin transform

H(w, z) =
1

Γ(w)

∫ ∞

0

Φ(t)
ezttw−1

1 − e−t
dt.

Here we put Φ(t) =
∑

Re τ>0 e
−tτ (see Section 5.2). Therefore it follows that H(w, z) is a

meromorphic function on C with respect to w since the log-singularity in Φ(t) is changed

into a pole by the Mellin transform.

Example 6.3. Retain the notation in Section 5.2. We define the function sinαζ (x) by

sinαζ (x) := :
∐
••

∏
Im(ρ)>0
m≥0

sinα(ρ + im− x) :.

Here the initial domain of this normal product is taken as
{
z ∈ C

∣∣ 0 ≤ Imx < 2π/α
}

. This

product exists and the function sinαζ (x) satisfies the functional equation

sinαζ (x) = Sα(x) sinαζ (x− i).

The function sinαζ (x) also possesses a quasi-periodicity on the R-direction (see Remark 4.2).

The existence of the function sinα∞(s) is shown as follows. The attached zeta function is
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essentially given by

Lα(s, x) :=
∑

Re(ρ)>0
m≥0

sinα(ρ + im− x)−s =
∑
m≥0

Lα(s, x− im)

= Φ(sα)eiαs/2
efα(x)s

1 − e−αs
+ s

∞∑
n=1

V (2iαn)

n

e−2niαx

1 − e−2nα
+ O(s2).

This expression together with the Cramér’s result for Φ(t) shows that Lα(s, x) is indeed

regularizable.

We have the counterparts of Examples 6.2, 6.3 for the eigenvalues of the Laplacian ∆Γ.
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